Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2001-12-26
2004-05-25
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S066000, C604S067000
Reexamination Certificate
active
06740072
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally, to infusion pump systems for the delivery of infusion formulations, and in particular, to a closed-loop algorithm for use in conjunction with a process controller for controlling the delivery of an infusion formulation to a body based in part on sensed blood glucose levels within the body.
2. Description of Related Art
Infusion pumps have been used for the programmed delivery of measured doses of an infusion formulation. (An infusion formulation is defined in the present disclosure as the substance being delivered by the infusion pump. This substance may comprise either a mixture of different components or it may be a single, pure substance, including, but not limited to drugs, dyes or other indicators, nutrient, or the like.) A typical example of such use is the delivery of an insulin formulation to a patient.
In the case where the infusion formulation is an insulin formulation, a sensing device may regulate the delivery of the insulin formulation by sensing the levels of blood glucose in the person. The delivery of the insulin formulation may be controlled by a control device associated with the pump having as an input a sensed blood glucose level. The control device may control activation of the pump to deliver an appropriate amount of the insulin formulation in accordance with the sensed blood glucose level.
Insulin is a protein hormone normally formed within the human pancreas. Because it regulates carbohydrate (sugar) metabolism, insulin is required for normal metabolic function. More specifically, insulin helps the body metabolize glucose. To avoid medical problems such as hypoglycemia and hyperglycemia, blood glucose levels should be maintained within a specific range. A normal range for glucose in the human body may be between 85 and 120 milligrams/deciliter (mg/dl).
In a non-diabetic person, insulin is secreted by the pancreas in small amounts throughout the day (basal rate of insulin secretion). In addition, the amount of insulin secreted by the pancreas may be modified under certain circumstances. For example, the pancreas of a non-diabetic person normally secretes larger amounts of insulin (bolus rate of insulin secretion) when the person ingests a meal to prevent postprandial hyperglycemia, i.e., abnormally increased sugar content in the blood.
In contrast to the non-diabetic person, a diabetic person's pancreas may not secrete the required amount of insulin. Thus, the diabetic person has to somehow artificially introduce the insulin into the body. One method of introducing the insulin is by the conventional insulin formulation injection method using a syringe. Using this method, the body's blood glucose level may be monitored (for example, by checking a blood sample) and the amount of insulin to be injected may be adjusted accordingly. For example, after a meal the blood glucose level may be monitored and an appropriate amount of insulin may be injected into the bloodstream of the user.
In the alternative, a diabetic person may choose to use an infusion pump such as the infusion pump described above. By using an infusion pump, a diabetic person may be able to adjust insulin delivery rates for the pump in accordance with the user's needs. These needs may be determined based on prior experience and/or the results of glucose monitoring (for example, by a sensing device in combination with a communication device).
In addition, infusion pumps may be engineered to function as an artificial pancreas. Such an infusion pump may deliver a specific amount of insulin formulation at specific intervals. As discussed above, a sensing device associated with the pump may monitor the blood glucose level of the user and the blood glucose level may then be used by the pump to automatically regulate the delivery of the insulin formulation.
It is known to use as a control device a process controller for performing automatic regulation of the infusion pump. The process controller, for example a processor or other computing element, controls the process such that a process variable is maintained at a desired set point value (also referred to in the present disclosure as the “goal”). Such process controllers typically use a set of control parameters which have been determined through, for example, experimentation or calculation, to operate in an optimal manner to control the process variable. Although not the only possible technique, these control parameters are typically dependent on the anticipated range of differences (“error values”) that result between the process variable and the set point during actual operation of the process.
Ordinarily, infusion formulation delivery systems utilize control systems having an input-response relationship. A system input, such as a sensed biological state, produces a physiological response related to the input. Typically, the input (such as a sensed blood glucose level) is used to control some parameter associated with the response variable (such as an insulin infusion rate or an amount of insulin).
A process controller employed in the delivery of an insulin formulation typically executes a closed-loop algorithm that accepts and processes a blood glucose level input supplied to the controller by a sensing device. The closed-loop algorithm may adjust insulin formulation delivery as a function of, for example, the rate of change over time of the sensed glucose level.
These closed-loop algorithms have many limitations. Some of these limitations result from the fact that a process controller employing a closed-loop algorithm to control the delivery of an insulin formulation may be restricted to only adding insulin formulation to the system. Once insulin formulation is added to the system, normally the controller cannot retrieve it.
Additional limitations result from the fact that certain parameters affecting glucose production may not be adequately compensated for by these closed-loop algorithms. For example, certain daily events may significantly affect glucose production levels in the human body. Thus, these events may also significantly affect the amount of insulin required to metabolize the glucose.
Exercise, for example, has been shown to lower blood glucose levels in the human body. Thus, exercise may result in a dip in blood glucose levels and a corresponding decrease in the amount of insulin formulation delivered by the body. Longer or more strenuous exercise events may result in a greater dip in blood glucose level than shorter and less strenuous exercise events.
Similarly, sleep and stress may affect the body's ability to burn carbohydrates and therefore may affect glucose levels. For example, glucose metabolism has been found to be slower in a sleep deprived state. In addition, elevations of certain stress hormones within the body may also result in slower glucose metabolism. Thus, longer or shorter periods of sleep or stress may result in more or less significant changes in glucose levels.
Furthermore, the ingestion of certain medications may affect a user's sensitivity to insulin, i.e. a given amount of insulin may be more or less sufficient depending on whether or not a particular medication has been taken.
An additional event that may significantly affect the production of glucose in the body is the ingestion of food. This results in part from the fact that during digestion carbohydrates are broken down into glucose that then enters the bloodstream. In addition, the amount and type of foods ingested affect the amount of glucose produced.
Closed-loop algorithms employed for controlling delivery of an insulin formulation in response to sensed blood glucose levels may not adequately compensate for the affects such daily events may have on blood glucose levels. Thus, the diabetic person relying on such closed-loop algorithms may be at an increased risk of hypoglycemia and/or hyperglycemia.
SUMMARY OF THE DISCLOSURE
Therefore, it is an advantage of embodiments of the present invention to provide a closed-loop algorithm for
Lebel Ronald J.
Miller Michael E.
Shah Rajiv
Starkweather Timothy J.
Casler Brian L.
Foley & Lardner LLP
Medtronic Minimed Inc.
Thissell Jeremy
LandOfFree
System and method for providing closed loop infusion... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for providing closed loop infusion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for providing closed loop infusion... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3251681