Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2001-07-20
2003-12-09
Nguyen, Lamson (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C358S302000
Reexamination Certificate
active
06659589
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to inkjet and other types of printers and more particularly, to a system and method for producing efficient ink drop overlap filled with a pseudo hexagonal grid pattern.
BACKGROUND OF THE INVENTION
Inkjet printers print dots by ejecting very small drops of ink onto the print media and typically include a movable carriage that supports one or more print cartridges each having a printhead with a nozzle member having ink ejecting nozzles. The carriage traverses over the surface of the print media. For any line of print, the carriage may make more than one traverse and utilize a varying number of nozzles in the array.
To complete a full line, the print head passes a specified number of times in a single or multi pass pattern. The print mode may have a number of parameters; the number of passes required to fill the area, and the position of the ink droplets at every pass. To define this feature, a matrix is created that defines each position of each pass in which a drop may print. The matrix is called the printmode mask.
Lines, text and graphics are normally printed with all nozzles aligned in the horizontal, or scan, axis. Defects, including, tails, spray drops and spear drops, can result in rough edges, vertical lines, horizontal lines, banding, and changes in hues on the print media. These defects may be due to a number of factors including nozzle alignment, nozzle outs, the firing frequency or the pen or noise.
The pattern on the print media is altered due to nozzle outs. A printhead with small drop volumes but utilizing a larger number of nozzles would increase the probability of a nozzle out, but each would have a decrease in visibility. For an unbiased writing system missing nozzle defects would scale linearly for any given color.
Printheads may develop mechanical noise. These changes to pen alignment through pen to pen alignment or vibration of the printhead may offset the printing pattern in a regular manner leading to a consistent defect such as banding. To offset this effect, the dots may be printed in a micro-stepping process, a multi-pass process, a process using multiple sized dots and inter-placing these dots, or by utilizing a random or Dithering Pattern.
In general, digital printing systems employ a dot placement pattern whereby circular dots are placed on a rectangular co-ordinate system. This pattern is convenient for the calculation of the placement of data. However the circular dots have to be relatively large to completely cover the media with a lot of dot overlap in areas directly between two adjacent dots, and little overlap at the points of the grid that fall between any four neighboring dots. As such, the rectangular system that uses larger drops requires more ink or toner to completely cover the print media. Therefore, what is needed is a printing system that solves the above problems.
SUMMARY OF THE INVENTION
To overcome the limitations in the prior art described above, and to overcome other limitations that will become apparent upon reading and understanding the present specification, the present invention is embodied in a system and method for producing efficient ink drop overlap filled with a pseudo hexagonal grid pattern.
In general, the present invention can include an inkjet printhead assembly that incorporates a preprogrammed correction scheme or schemes [1-n] (herein correction scheme will refer to all applications), for correcting systematic ink drop placement errors of the inkjet printhead. A general correction scheme can be developed for a class of inkjet printhead assemblies during manufacturing of the class of inkjet printhead assemblies. The correction scheme could include general corrections that cover general errors that exist for the entire class of inkjet printheads. Alternatively, individual correction schemes can be developed during manufacturing of each individual inkjet printhead assembly that covers specific errors that exists for each individual printhead.
The correction scheme can be controlled by a printer driver as software operating on a computer system that is connected to the inkjet printer or as firmware incorporated into the inter in a controller device. Also, the correction scheme can be encoded on a memory device incorporated into inkjet printhead assembly itself. In this case, the memory device could also store other various printhead specific data. The data can include identification, warranty, characterization usage, systematic ink drop placement errors, etc. Information can be written and stored at the time the printhead assembly is manufactured or during printer operation. The correction scheme can be accessed and applied by the printer driver.
In another embodiment, the inkjet printhead assembly includes an image mapping processor that has the ability to apply the correction scheme during printing operations. The image mapping processor can receive the correction scheme from the memory device or from the printer driver. The image mapping processor can make other decisions, such as making its own firing and timing decisions for providing efficient thermal and energy control. For example, it can be preprogrammed to regulate edge errors, depending on the quality of print desired by a user. In addition, the image mapping processor can aid in calibrating the printhead assembly in real time. Further, in another embodiment of the invention, it operates in conjunction with available rasterization engines using commercially viable software products.
REFERENCES:
patent: 4367482 (1983-01-01), Heinzl
patent: 4374388 (1983-02-01), Heinzl
patent: 4651228 (1987-03-01), Koch
patent: 6164745 (2000-12-01), Nagoshi et al.
patent: 1029685 (2000-08-01), None
patent: WO95/31064 (1995-11-01), None
Bruch Xavier
Castano Jorge
Hickman Mark S.
Richard Wayne M.
Underwood John A.
LandOfFree
System and method for producing efficient ink drop overlap... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for producing efficient ink drop overlap..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for producing efficient ink drop overlap... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3152953