System and method for processing long messages in a chip card

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

G06F 1700

Patent

active

058092412

DESCRIPTION:

BRIEF SUMMARY
SCOPE OF THE INVENTION

The invention relates to a method and device for processing messages in a chip card with a processor unit and a writable, non-volatile memory, where an access authorization for a message on the chip card has to be checked before further processing. The invention also relates to a method for communicating with the chip card.


STATE OF THE ART

Data-carrying cards or chip cards are terms currently used to mean portable cards, generally in roughly the form of a cheque card and preferably made of plastic or metal and having an electronic chip integrated therein. In contrast to simple storage cards (known as chip-cards or memory cards) intelligent data-carrying cards or processor cards (also called multi-functional chip cards or smart cards) also have a processor to control the data stored on the data-carrying card, in addition to a memory storage region. This allows better protection of the data and leads to an improved functionality of the chip card. Simple memory cards generally only permit writing and reading of the data. In addition, smart cards also have access to functions for the structuring, localising, handling and protection of the data.
The increasing use of smart cards, resulting in particular from the increased protection against tampering, extends to a number of applications. Applications with smart cards, and hence applications for which communication is required between the smart card and any desired device, may, for example, be cashless payments, identification of the owner of the smart card, storage of data and the like.
In order to prevent unauthorised access to the data on the smart card, the appropriate access authorization must first be demonstrated prior to access to the data. Methods for checking access authorization may, for example, be an authentification, for example, through a MAC (Message Authentification Code) or an identification number (PIN--Personal Identification Number), or data encryption. The authorization must be verified before the data can be effectively overwritten. The authentification provides a means by which the authenticity of subjects and objects can be established. Generally a symmetrical encryption algorithm, such as DES (Digital Encryption Standard), or an asymmetrical encryption algorithm, such as, for example, a Public Key Algorithm, is employed.
FIG. 1 shows the diagrammatic structure of a smart card 10. The smart card 10 communicates with the outside world, represented here by any desired device 15, which may, for example, be a card reader, a computer or the like, through an I/O port 20, which is connected to a processor unit 30. The I/O port 20 forms the interface to the outside world of the smart card 10 and conducts the messages or other information captured from the outside world to the processor unit 30. Messages or data from the smart card 10 can also be retransmitted to the outside world through the I/O port 20.
The processor unit 30 is connected with a volatile, writable memory 40, a non-volatile, read-only memory 50 or a similarly non-volatile but writable memory 60. The volatile memory 40 is generally implemented as RAM (Random Access Memory) in current smart cards and is also hereinafter referred to as RAM 40. The read-only, non-volatile memory 50 is preferably implemented as ROM (Read-Only Memory) -in current smartcards and is hereinafter referred to as ROM 50. Correspondingly, a PROM (Programmable Read Only Memory) or the like may be used. The non-volatile but writable memory 60 is preferably implemented in the smart card 10 as EEPROM (Electrically Erasable Programmable Read Only Memory) and will be described below as EEPROM 60.
Volatile storage, such as the RAM 40, differs from non-volatile, such as the ROM 50 or the EEPROM 60 in that, in the case of the volatile memory, the memory contents are lost when the power supply is removed, while the memory contents in the non-volatile memory are retained, even after removal of the power supply. Read-only memory, such as the ROM 50, contains a fixed program (e.g. burnt in) whi

REFERENCES:
patent: 5390199 (1995-02-01), Krajewshi, Jr. et al.
patent: 5629508 (1997-05-01), Findley, Jr. et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for processing long messages in a chip card does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for processing long messages in a chip card, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for processing long messages in a chip card will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-98786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.