System and method for predicting and displaying wake vortex...

Communications: electrical – Aircraft alarm or indicating systems – Potential collision with other aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S949000, C340S968000, C342S02600R

Reexamination Certificate

active

06703945

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to aircraft collision avoidance systems, and particularly, to predicting the presence of wake vortex turbulence of air traffic and displaying the information on a Traffic Alert and Collision Avoidance System, or TCAS.
BACKGROUND OF THE INVENTION
Aircraft pilots are expected to visually identify collision threats and avoid them. This “see and avoid” technique based on the pilot's visual sense remains the most basic method of aircraft collision avoidance. However, since the 1950's electronic techniques based on radio frequency and optical transmissions have been developed to supplement the pilot's visual sense. The government has developed and implemented a system of ground based and aircraft carried equipment designated the Air Traffic Control Radar Beacon System (ATCRBS). This system includes two different types of ground based radar emitters located at each of a plurality of Air Traffic Control (ATC) stations. One type of radar is referred to as the Primary Surveillance Radar (PSR), or simply as the primary radar. The primary radar operates by sending out microwave energy that is reflected back by the aircraft's metallic surfaces. This reflected signal is received back at the ground radar site and displayed as location information for use by an air traffic controller. The second type of radar is referred to as the Secondary Surveillance Radar (SSR), or simply secondary radar. Unlike the primary radar, the SSR is a cooperative system in that it does not rely on reflected energy from the aircraft. Instead, the ground based SSR antenna transmits a coded 1030 MHz microwave interrogation signal. A transponder, i.e., a transmitter/receiver, carried on the aircraft receives and interprets the interrogation signal and transmits a 1090 MHz microwave reply signal back to the SSR ground site. This receive and reply capability greatly increases the surveillance range of the radar and enables an aircraft identification function, referred to as Mode-A, wherein the aircraft transponder includes an identification code as part of its reply signal. This identification code causes the aircraft's image or blip on the ATC operator's radar screen to stand out from the other targets for a short time. Thus, Mode-A provides an rudimentary identification function.
In addition to the identification function provided by Mode-A, the aircraft altimeter is typically coupled to the transponder such that a reply signal includes altitude information, referred to as Mode-C.
A ground based SSR sequentially transmits both Mode-A and Mode-C interrogation signals to aircraft in the area. Accordingly, the interrogation signal transmitted by the SSR contains three pulses. The second pulse is a side-lobe suppression signal transmitted from an omnidirectional antenna co-located with a mechanically rotating antenna which provides a highly directive antenna beam. The first and third pulses are transmitted by the directive antenna at a predetermined frequency and are separated by a predetermined interval. The time interval between the first and third pulses defines what information the interrogator is requesting: eight (8) microseconds for identification and twenty-one (21) microseconds for altitude. The operator of the ground based SSR sets the radar interrogation code to request either Mode-A or Mode-C replies from the aircraft transponder. Typically, the radar is set to request a sequence of two Mode-A replies followed by a single Mode-C reply. This sequence is repeated so that a radar operator continuously receives both the Mode-A identification code and the Mode-C altitude information. Upon receipt of the interrogation signal, the aircraft transponder develops and transmits a reply signal which includes the identification or altitude information. The ground based SSR receives and processes the transponder reply signal, together with time of arrival range information, to develop a measurement of position for each responding aircraft. Under such a system, the air traffic controller uses this information to involve the aircraft by radio, usually with voice communication, to maintain or restore safe separations between aircraft. The system is inherently limited because each aircraft needs be dealt with individually, which requires a share of the air traffic controller's time and attention. When traffic is heavy, or visibility is low, collision potential increases.
During the 1960's the increases in the number of aircraft, the percentage of aircraft equipped with transponders, and the number of ATCRBS radar installations began to overload the ATCRBS system. This system overload caused a significant amount of interference and garble in the Mode-A and Mode-C transmissions because of replies from many simultaneously interrogated aircraft. Furthermore, the Mode-A and Mode-C systems are unable to relay additional information or messages between the ground based SSR and the interrogated aircraft, other than the aforementioned identification and altitude information. The Mode Select, or Mode-S, was the response to this overload and other deficiencies in ATCRBS. Mode-S is a combined secondary surveillance radar and a ground-air-ground data link system which provides aircraft surveillance and communication necessary to support automated ATC in the dense air traffic environments of today.
Mode-S incorporates various techniques for substantially reducing transmission interference and provides active transmission of messages or additional information by the ground based SSR. The Mode-S sensor includes all the essential features of ATCRBS, and additionally includes individually timed and addressed interrogations to Mode-S transponders carried by aircraft. Additionally, the ground based rotating directive antenna is of monopulse design which improves position determination of ATCRBS target aircraft while reducing the number of required interrogations and responses, thereby improving the radio frequency (RF) interference environment. Mode-S is capable of common channel interoperation with the ATC beacon system. The Mode-S system uses the same frequencies for interrogations and replies as the ATCRBS. Furthermore, the waveforms, or modulation techniques, used in the Mode-S interrogation signal were chosen such that, with proper demodulation, the information content is detectable in the presence of overlaid ATCRBS signals and the modulation of the downlink or reply transmission from the transponder is pulse position modulation (PPM) which is inherently resistant to ATCRBS random pulses. Thus, the Mode-S system allows full surveillance in an integrated ATCRBS/Mode-S environment.
The Radio Technical Commission for Aeronautics (RTCA) has promulgated a specification for the Mode-S system, RTCA/DO-181A, M
INIMUM
O
PERATIONAL
P
ERFORMANCE
S
TANDARDS FOR
A
IR
T
RAFFIC
C
ONTROL
R
ADAR
B
EACON
S
YSTEM
/M
ODE
S
ELECT
(ATCRBS/M
ODE
-S) A
IRBORNE
E
QUIPMENT
, issued January 1992, and incorporated herein by reference. According to RTCA specification DO-181, the airborne portion of the Mode-S system includes in one form or another at least a dedicated transponder, a cockpit mounted control panel, two dedicated antennas and cables interconnecting the other elements. As discussed more fully below, each aircraft may be within range of more than one SSR ground station at any time and must respond to interrogation signals broadcast from multiple directions. Therefore, the Mode-S system typically uses two single element omnidirectional antennas to receive interrogation signals from any quadrant and reply in kind.
In operation, a unique 24-bit address code, or identity tag, is assigned to each aircraft in a surveillance area by one of two techniques. One technique is a Mode-S “squitter” preformed by the airborne transponder. Once per second, the Mode-S transponder spontaneously and pseudo-randomly transmits, or “squitters,” an unsolicited broadcast, including a specific address code unique to the aircraft carrying the transponder, via first one

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for predicting and displaying wake vortex... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for predicting and displaying wake vortex..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for predicting and displaying wake vortex... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3258203

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.