X-ray or gamma ray systems or devices – Specific application – Computerized tomography
Reexamination Certificate
2000-10-27
2002-01-22
Bruce, David V. (Department: 2882)
X-ray or gamma ray systems or devices
Specific application
Computerized tomography
C378S010000, C378S019000, C378S901000
Reexamination Certificate
active
06341153
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to non-destructive examination (NDE) of objects. More particularly the present invention is a system and method for nondestructive examination using portable computer aided tomography (CT) system.
BACKGROUND OF THE INVENTION
Non-destructive examination of objects is a key aspect of present day engineering and development. Such items as aircraft engines, rocket motors, industrial robots, and a host of other construction and industrial pieces of equipment all require critical inspection. It is extremely important to know the status and structural integrity of elements before they are assembled into a finished product in order to insure safety stability, and usefulness of the finished object. Further, with increasing complexity to complete comes as an increasing expense. Thus destructive testing in order to find flaws in manufacturing can be an extremely expensive operation. Non-destructive testing and examination provides an appealing alternative and one, which leaves the structural integrity of the object being tested intact.
Different types of non-destructive examination (NDE) include liquid dye penetration, magnafleuxing and ultrasonic inspection, inferred imaging, and x-ray radiographs, all of which are alternatives used to examine the internal structure of objects.
X-ray examination generally provides a planar photograph recorded on film. Interpretation of the x-ray film requires special training in order to provide a proper diagnosis of the contents of the x-ray. Such x-rays represent a two-dimensional examination of the object. However, the ability to examine an object three-dimensionally improves visualization of internal phenomenon and simultaneously improves the diagnosis of examination of an object. When the object comprises a complex structure; a three-dimensional examination allows a more complete examination and diagnosis of the quality of an object.
Two-dimensional x-ray images can be used to create a three-dimensional visualization of objects. This technique, referred to as computerized-assisted tomography, or CAT scanning, provides very accurate positioning and information within three-dimensional space, capturing an object being examined. Such a three-dimensional image is created by utilizing multiple two-dimensional density maps, created by x-rays, to create a volumetric image of the object being examined.
Most CAT scan systems are large stationary systems, which typically do not operate in real time. Numerous two-dimensional x-rays must be obtained before the three-dimensional image can be created using mathematical algorithms known to those skilled in the art. In typical practice, several hundred projections are used in order to construct the three-dimensional image of the object under examination.
While such CT systems are a form of NDE, they are extremely expensive. Further, items that are to be inspected must be shipped to the facility having the CT system. Further in some cases objects are so large that the CT examination may not be possible.
The current scientific literature indicates that it is possible to use three x-ray images at different angles to reconstruct a three-dimensional image. This techniques is described in the paper entitle “Three-dimensional binary image reconstruction from three two-dimensional projections using a randomized ICM alba rhythm,” Discrete Tomography Workshop, by F. Retraint, F. Peyrin, and J. M. Dinten, Aug. 1997 Hungary, John Wirely and Sons, Inc., Volume 9, pages 135-146 (1998) whose contents arc incorporated herein by reference in their entirety. This technique is based on using discrete tomography techniques to simplify the interpretation of the density patterns of the individual x-rays. The reduced number of x-rays required allows generation of three-dimensional images.
It would be truly useful to have a system and method for creating three-dimensional CT images for non-destructive examination in real time. Further, it would additionally be useful to compare such images to known engineering information about the object being examined in order to more precisely examine at pin point any defects in the object. Such a system would also be portable.
SUMMARY OF THE INVENTION
In view of the above discussion it is therefore an objective of the present invention to provide three-dimensional non-destructive examination.
It is a further objective of the present invention to utilize a system for three-dimensional NDE that is portable and can be brought to the work or launch site to create a three-dimensional image.
It is yet another objective of the present invention to create three-dimensional NDE images in near real time in order to assess the integrity of the object being examined.
It is still another objective of the present invention to use a priori information about the object being examined in order to assist in reconstruction of the three-dimensional image.
It is still another objective of the present invention to convert three-dimensional NDE images to CAD/CAM system images to allow for further manipulation.
It is a further objective of the present invention to compare three-dimensional NDE images to CAD/CAM drawings of the object being tested in order to precisely identify defects.
It is yet another objective of the present invention to create a true three-dimensional volumetric image of the object being tested in near real time.
It is still another objective of the present invention to use the volumetric image created to provide a cutaway view of the object so that both the density and position of elements can be analyzed.
It is a further objective of the present invention to utilize CAD/CAM system capabilities to allow the super position of actual three-dimensional failures onto the drawing of the part in question to promote more rapid analysis.
It is still another objective of the present invention to perform finite element analysis (FEA) to determine conditions, which cause any defect that is imaged.
It is a further objective of the present invention to allow for electronic comparison of one image to another to analyze simpler failures of parts.
The present invention comprises a three-dimensional computerized tomography system for analysis of engineering defects of parts. The system is a three-dimensional system comprising of a processor for receiving information from a plurality of x-rays and for reconstructing those x-rays into a three-dimensional image, and an imaging screen for creation of the image that is subsequently stored.
The portable NDE system of the present invention is a hand portable system that can be carried to a work site to perform the NDE discussed above. As noted above, the system comprises preferably but without limitation a laptop computer, a portable x-ray source, and an imaging means to recording the x-ray images.
The laptop computer, may be in a form of portable computational capability be it a laptop computer, small computer system, or special purpose handheld device. The computer receives the three-dimensional CT images and creates a three-dimensional image based upon the CT images required. The three-dimensional CT images are exported into a CAD/CAM system such as the Pro-Engineer system from the PCT, Inc., 128 Technology Drive, Waltham, Mass. 02453, whose capabilities are incorporated by reference herein in their entirety. The Pro-Engineer system allows the superposition of the actual three-dimensional image onto a drawing of the part that is stored in a Pro-Engineer coordinate system. Once the three-dimensional CT images are in the Pro-Engineer coordinate space, a module such as the Pro-Mechanica program is used to perform a finite element analysis (FEA) to determine conditions, which eventually cause the defect.
These images can be viewed by an engineer to perform the appropriate analysis for the part in question. Further, the Pro-Engineer software allows proper manipulation of the CT images against the stored drawings of the part in order to precisely locate any defects identified.
Utilizing the system of the present invention which one
Rashford Robert A.
Rivera Charles
Genesis Engineering Company
Roberts Abokhair & Mardula LLC
LandOfFree
System and method for portable nondestructive examination... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for portable nondestructive examination..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for portable nondestructive examination... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2872534