System and method for phase recovery in a synchronous...

Multiplex communications – Communication techniques for information carried in plural... – Combining or distributing information via time channels

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S519000, C375S371000

Reexamination Certificate

active

06307869

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of digital communication systems more particularly to phase recovery in a synchronous communication system.
The use of fiber optic communications continues to grow worldwide at a rapid pace. existing communications systems do not include digital and systems and methods for phase recovery to accommodate the expanding number of individual users.
Currently, fiber optic communication systems distribute signals, from a central office, through a fiber distribution system, to a number of different customers each at different distances from the central office. These systems use asymmetric bandwidths for both the downstream data (from the central office to the customer) and the upstream data (from the customer to the central office) directions. As an example, a communication system, such as Asynchronous Transfer Mode (ATM) system, uses a downstream link of 622.08 Mb/s and upstream data path of 155.52 Mb/s.
However, a problem arises in such ATM systems as the bursts of information travel along the upstream data link from the customers, at different distances, to the central office because the differences in distance create phase delays in the upstream data received at the central office. Additionally, this problem is usually compounded because many fiber optic communication systems use time division multiple access (TDMA) coding schemes. Under a TDMA coding scheme, the timing arrangement requires each customer to input a time variation in a time slot so that the information arrives at the central office in a timely fashion. This requirement is necessary because in a TDMA system if two or more customers from different directions send data through the upstream link, the customer that is farther away has to send his information sooner so that it falls in a time slot behind the customer that is closer. Again as in the non-TDMA case, each packet of incoming TDMA data at the central office is going to have a phase difference from the others. Thus recovering a clock reference from the upstream data is crucial for the proper synchronization and recovery of the upstream data because the recovered upstream data clock reference eliminates the effects of the phase delays on the upstream data.
A phase locked looped (PLL) has been used to recover this type of upstream data. An ATM type of system, as an example, requires that each packet of incoming data contains a preamble that allows a PLL to realign itself to each packet of incoming data. However, PLLs have numerous problems. The main problem is inadequate speed of signal acquisition. A PLL must adjust quickly to the incoming data packet when the size of the preamble is only a few bits long for an efficient transmission.
The customer premises equipment (CPE) units (telephones, PBX switches, etc.) receive the downstream clock, divide it by four to get the upstream clock, and then send the upstream data information back, in a synchronized fashion, to the central office equipment. The process of sending the upstream data information back to the central office introduces phase delays that effect the speed of signal acquisition of the PLL.
Thus, there is a need to develop an all digital phase recovery system (ADPRS) and method that uses the high speed downstream data clock to derive the upstream data clock in a fashion that is all-digital and would adapt very rapidly to the phase of each different packet of data as it comes in. However, at present, there is no such implementation.
SUMMARY OF THE INVENTION
The invention and methods are directed to recovering the phase of the upstream data link in a communication system using an all-digital method. While the following examples are directed to an ATM communication system the invention and methods described apply equally well to non-ATM systems.
In this invention, the above problems discussed in the background of the prior art are solved, and a number of technical advances are achieved in the art by use of the downstream clock in deriving the upstream clock.
In accordance with one aspect of the present invention, the upstream data transmission is accomplished by using the clock derived from the downstream data transmission. The invention provides, for subsequent processing, a lower speed clock with a fixed data phase relationship that prevents false byte alignment because the invention realigns the phase on each received cell independent of which CPE transmitted the cell.


REFERENCES:
patent: 4756011 (1988-07-01), Cordell
patent: 5550860 (1996-08-01), Georgiou et al.
patent: 5844954 (1998-12-01), Casasanta et al.
patent: 5936964 (1999-08-01), Valko et al.
Plas Van Der G et al.: “ATM Over Passive Optical Networks: System Design and Demonstration” Proceedings of the SPIE, vol. 1786, Nov. 13, 1992, pp. 48-57.
Breemen Van J et al.: “Asynchronous Transfer Mode Over a Passive Optical Network: The Realization of a High Speed Demonstrator System” International Journal of Optoelectronics (Incl. Optical Computing & Processing), vol. 11. No. Nov. 1, 1997, pp. 71-84.
Onishi K et al.: “A System Implementation for PDS Optical Subscriber Loop” Conference on Optical/Hybrid Access Networks, Jan. 1, 1992, pp. 4.09.01-4.09.06.
Eldering C A et al.: “Digital Burst Mode Clock Recovery Technique For Fiber-Optic Systems” Journal of Lightwave Technology, vol. 12, No. 2 Feb. 1, 1994, pp. 271-278.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for phase recovery in a synchronous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for phase recovery in a synchronous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for phase recovery in a synchronous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2606027

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.