Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...
Reexamination Certificate
2001-04-05
2002-12-10
Therkorn, Ernest G. (Department: 1723)
Liquid purification or separation
Processes
Liquid/liquid solvent or colloidal extraction or diffusing...
C210S656000, C210S198200, C435S006120, C536S025400
Reexamination Certificate
active
06491821
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to the separation of polynucleotide fragments by liquid chromatography. More specifically, the invention is directed to a liquid chromatography system and method, such as Matched Ion Polynucleotide Chromatography or slalom chromatography, which enhances the separation of polynucleotides.
BACKGROUND OF THE INVENTION
Separation of polynucleotides is a focus of scientific interest, and numerous researchers have been attempting to achieve technical improvements in various aspects of polynucleotide separation. Anion exchange separation and reverse phase ion pair chromatography are among the most frequently used methods for separating polynucleotides.
Previous work has focused on developing rapid, high resolution separations, developing separations based on the size of the polynucleotide fragment rather than the base sequence of the fragment, and on developing the ability to collect fractions of polynucleotides.
W. Bloch (European patent publication No. EP 0 507 591 A2) demonstrated that, to a certain extent, length-relevant separation of polynucleotide fragments was possible on nonporous anion exchangers with tetramethylammonium chloride (TMAC) containing mobile phases. Y. Ohimya et al. (
Anal. Biochem
., 189:126-130 (1990)) disclosed a method for separating polynucleotide fragments on anion exchange material carrying trimethylammonium groups'. Anion exchangers with diethylaminoethyl groups were used by Y. Kato et al. to separate polynucleotide fragments (
J. Chromatogr
., 478:264 (1989)).
An important disadvantage of anion exchange separations of double-stranded polynucleotides is the differing retention behavior of GC- and AT-base pairs. This effect makes separation according to molecular size impossible. Another important drawback of the anion exchange methodology is the necessity to use salts and buffers for elution, thus making subsequent investigation of the polynucleotide molecule fractions very difficult.
U.S. Pat. No. 5,585,236 (1996) to Bonn et al. describes a method for separating polynucleotides using what was characterized as reverse phase ion pair chromatography (RPIPC) utilizing columns filled with nonporous polymeric beads. High resolution, rapid separations were achieved using an ion-pairing reagent, triethylammonium acetate, and acetonitrile/water reagent mobile phase gradient. This work is important because it is the first separation to give size-dependent, sequence-independent separation of double-stranded polynucleotides by chromatography. These separations are comparable to gel electrophoresis-compatible separations, currently the most widely used technology for polynucleotide separations. Bonn's work makes it possible to automate separations based on the size or on the polarity of polynucleotides.
In the course of our work on separation of polynucleotides using the method developed by Bonn et al., with HPLC instrumentation and columns as described by Bonn, we discovered a degradation effect on the separation of double-stranded polynucleotides after long-term column usage (i.e., greater than about 50 injections). This degradation effect has been generally observed as a loss of resolution for base pairs greater than 200, as illustrated in the chromatogram of FIG.
1
. As the degradation worsens, increasingly short fragments of polynucleotides are affected, as shown in FIG.
2
. Eventually, the polynucleotides do not elute from the system. As such, the degradation effect or decreasing resolution appears to be a function of the length of the polynucleotide fragment being separated.
There is no published chemical mechanism which would explain such a degradation effect that distinguishes between different size fragments while using reverse phase chromatography. Therefore, we first examined our procedure for packing the column. We realized that the molecules that we were attempting to separate were several magnitudes larger in size than those conventionally separated by reverse phase ion pair liquid chromatography. We suspected that hydrodynamic flow through the column was adequate for short polynucleotide fragments, but was being disrupted for larger fragments. In other words, perhaps the longest fragments were being partially sheared. However, we were unable to identify a packing procedure that would discriminate between short and long fragments of polynucleotides.
Although we could not conceive a mechanism by which chemical contamination could produce these unusual results, we nevertheless examined contamination of one or more of the various “pure” reagents employed in liquid chromatography. After testing each of the reagents for contamination, we determined that this was not the source of the problem. This is not surprising, since the mobile phases used are not corrosive.
Subsequent clean-up of the column with injections of tetrasodium ethylenediaminetetraacetic acid (EDTA), a metal-chelating agent, largely restored chromatographic resolution, as shown in FIG.
3
. Putting a chelating additive into the mobile phase can provide some protection to the column. Without wishing to be bound by theory, there are several mechanisms by which a chelating reagent can provide protection or restore the instrument or column. One mechanism is the chelating reagent binds the free metal ions in solution, thus preventing any interaction of the metal ions with the DNA. Another mechanism is the chelating reagent coats colloidal metal ions, thereby preventing interaction of the colloidal metal ions with the DNA. The colloidal metal can be introduced from the mobile phase, injected into the mobile phase, or can be released from welted surfaces in the fluid path. If the chelating reagent is water soluble, it can eventually dissolve the colloidal metals.
We were successful in adding small amounts (i.e., 0.1 mM) of tetrasodium EDTA to the mobile phase without significant changes to the chromatography. However, this concentration of EDTA was not sufficient to protect the columns in all of the stainless steel HPLC instruments and columns that were tested. There can be cases where the amount of metal ions present or generated are at a concentration where adding a chelating reagent will coat or bind the metal ions. In these cases, addition of a small amount of chelating reagent can allow the successful separation of DNA fragments.
We tested the use of larger amounts of chelator additive in the mobile phase and found that addition of 10 mM of tetrasodium EDTA impaired the separation of polynucleotides. It was still uncertain that this higher concentration of chelating agent provided an acceptable protective benefit. While use of EDTA injected into the mobile phase (via the HPLC sample injection valve) demonstrated that the column can be regenerated, addition of chelating agents to the mobile phase is not an ideal solution to the problem as it can hamper subsequent use or analysis of the polynucleotide fragments.
We then discovered that placing a cation exchange resin in the flow path of the mobile phase removed the problem. Guard disks were prepared containing a gel-type iminodiacetate resin with an ion exchange capacity of 2.5 mequiv/g (tested with Cu(II)).
FIG. 4
shows a chromatogram obtained when the guard disk was positioned directly in front of the sample injection valve.
FIG. 5
shows a chromatogram obtained when the guard disk was placed directly in front of the separation column (i.e., between the injection valve and the column). Attempts to separate polynucleotides on the stainless steel HPLC system without the use of guard disks or guard columns containing cation exchange resin or chelating resin resulted in rapid deterioration of the chromatographic separation.
From the improved results obtained by placing a cation exchange resin in the flow path of the mobile phase, we concluded that whatever was causing the peak distortion, probably ionic contaminants, was capable of binding to the cation exchange resin. Whatever was causing the fragment size-dependent distortion of the peaks had been removed by the cation ex
Gjerde Douglas T.
Haefele Robert M.
Togami David W.
Therkorn Ernest G.
Transgenomic Inc.
LandOfFree
System and method for performing polynucleotide separations... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for performing polynucleotide separations..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for performing polynucleotide separations... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2995519