Surgery – Instruments – Electrical application
Reexamination Certificate
2001-09-28
2004-02-24
Dvorak, Linda C. M. (Department: 3739)
Surgery
Instruments
Electrical application
C128S898000, C607S122000
Reexamination Certificate
active
06695838
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATIONS
Not Applicable.
FIELD OF THE INVENTION
This application relates to systems and methods for ablating cardiac tissue. More particularly, it relates to systems and methods for the treatment of atrial fibrillation.
BACKGROUND OF THE INVENTION
Cardiac arrhythmias, such as atrial fibrillation, are commonly occurring disorders characterized by erratic beating of the heart. The regular pumping function of the atria is replaced by a disorganized, ineffective quivering caused by chaotic conduction of electrical signals through the upper chambers of the heart. Atrial fibrillation may be caused by the rapid and repetitive firing of an isolated center or focus within the atrial cardiac muscle tissue. Such foci may act to trigger AF or may, once triggered, sustain the fibrillation. Recent studies have suggested that foci for such arrhythmia are predominantly in a region of cardiac tissue proximal to the pulmonary veins that extend out of the heart from the left atrium. More particularly, tissue proximal to the superior pulmonary veins denoted as ostia are likely AF foci.
While medication can be an effective treatment for some cases, many patients are not responsive to medical therapies and require alternative treatment. As an alternative to medication, a surgical technique, known as the Maze technique, requires open chest surgery to strategically incise the atrial wall, and subsequently repair the incisions by suturing. The result of this surgery is to create scar tissue located along the incision lines and extending through the atrial wall to block electrical conductivity from one segment to another.
While the Maze procedure has proven effective in restoring normal sinus rhythm, it requires considerable prolongation of cardiopulmonary bypass and aortic crossclamp time, especially when performed in combination with other open heart procedures. Over the last decade, more simplified techniques have been proposed which replace surgical incisions with ablations, or scars, formed in the heart tissue. The various energy sources used in ablation technologies include cryogenic, radiofrequency (RF), laser, and microwave energy. The ablation devices are used to create tissue lesions in an affected portion of the heart in order to block electrical conduction.
One common ablation technique employs the use of a catheter that is introduced into the heart (e.g., intravascularly) to direct RF energy at specific areas of heart tissue found to be the source of the irregular rhythms. An electrophysiology (EP) study is first performed to discover the location and characteristics of the arrhythmia and, once the specific location is identified and mapped, RF energy is delivered to the tissue to ablate the tissue, thus forming a lesion that blocks electrical conduction. While minimally invasive techniques are usually preferred, the procedure is often performed in combination with other open heart procedures as a prophylactic to prevent post-operative onset of atrial fibrillation.
RF ablation techniques are typically successful in treating atrial fibrillation, however the lesions must be well defined within the heart to be effective. The lesion must have a sufficient length, continuity and/or depth to interrupt or to block electrical conduction across the affected portion of the heart. This can be difficult to achieve without forming an incision in the atrium.
In addition, if the energy is not uniformly transmitted to the target site, hot spots can form, possibly leading to severe tissue damage or blood coagulation (clots).
One potential problem that may be encountered during cardiac ablation procedures is the risk of collateral tissue damage. In some cases the energy-delivering electrode performing the ablation is positioned at the purported focus and a pad, which acts the return electrode, is externally placed on the patient's body. Although most of the generated energy may be appropriately directed at the focus, the uncertain, unpredictable energy return path from the heart to the return electrode pad may lead to damage of other vital organs or structures. The esophagus, the lungs, and nerve tissue are examples of organs or tissue structures that may be susceptible to unintended energy influx.
Accordingly, there exists a need for ablation systems and methods that can be used safely and effectively to effect cardiac ablation procedures.
SUMMARY OF THE INVENTION
The present invention provides ablation systems and methods for treating atrial fibrillation utilizing RF energy. The system comprises an energy delivering electrode and a return electrode that is placed in contact with tissue (e.g., cardiac tissue) within the patient's body. The use of such a system and method of the present invention is advantageous because it facilitates safe and effective ablation procedures in which the dispersion of current is controlled so as to minimize the potential for causing unintended collateral damage to non-target, sensitive tissue structures and organs.
According to a method of the invention, the return electrode is positioned in contact with tissue (e.g., cardiac tissue) within the patient's body. With the return electrode properly secured and placed to provide a controlled path for current, the energy-delivering electrode is positioned is proximal to a part of an organ (e.g., the heart) where it is desired to effect ablation. An electrosurgical current is then established through the target tissue, between the energy-delivery electrode and the return electrode. The current should be delivered at a magnitude and for a duration effective to form a lesion that is sufficient to block electrical conductivity at the focus or foci. Preferably, the lesion is transmural, extending through the wall of the heart at the target site from an endocardial surface to an epicardial surface thereof, and it is continuous along its length. In one embodiment, the return electrode has a surface area that is larger than a surface area of the energy-delivering electrode.
An electrosurgical generator is used with the method of the invention to deliver current to the target tissue. The generator can be one that is able to operate in the bipolar and/or monopolar modes.
In one aspect, the target tissue is a surface segment of a portion of the heart, such as the left atrium. More particularly, the target tissue may be adjacent to a pulmonary vein ostium. The invention provides sufficient flexibility that the energy delivering and return electrodes can be placed in contact with or adjacent to target tissue that is on either an epicardial or endocardial surface of the heart. Moreover, the method may be utilized by accessing the target tissue through a sternotomy, through a thoracoscopic portal, or by other techniques. The method may be performed upon a beating heart or upon a stopped heart.
The return electrode that is utilized with the invention may take a variety of forms. In one aspect, the return electrode is of a patch-like shape that is able to be affixed by various techniques to the appropriate tissue in the patient's body. Alternatively, the return electrode can be attached to or integral with another tool or device that is utilized by the surgeon and which is in intimate contact with the patient's tissue (e.g., the heart) during the surgical procedure. For example, the return electrode may be attached to or integral with a heart positioning or manipulation device that is used to spatially manipulate the heart during a surgical procedure.
The invention further contemplates systems and devices that facilitate the practice of the invention.
REFERENCES:
patent: 5697928 (1997-12-01), Walcott et al.
patent: 5904711 (1999-05-01), Flom et al.
patent: 6012457 (2000-01-01), Lesh
patent: 6079414 (2000-06-01), Roth
patent: 6149649 (2000-11-01), McGarry et al.
patent: 6161543 (2000-12-01), Cox et al.
patent: 6164283 (2000-12-01), Lesh
patent: 6237605 (2001-05-01), Vaska et al.
patent: 6245064 (2001-06-01), Lesh et al.
patent: 6251109 (2001-06-01), Hassett et al.
patent: 6325797 (2001-12-01
Pendekanti Rajesh
Wellman Parris S.
Dvorak Linda C. M.
Ethicon Inc.
Nutter & McClennen & Fish LLP
Ruddy David M.
LandOfFree
System and method for performing cardiac tissue ablation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for performing cardiac tissue ablation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for performing cardiac tissue ablation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3346342