Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of centralized switching system
Reexamination Certificate
2001-08-30
2004-08-31
Tran, Quoc D. (Department: 2643)
Telephonic communications
Diagnostic testing, malfunction indication, or electrical...
Of centralized switching system
C379S009020, C379S009040, C379S112060
Reexamination Certificate
active
06785361
ABSTRACT:
NOTICE OF COPYRIGHT PROTECTION
A portion of the disclosure of this patent document and its figures contain material subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, but otherwise reserves all copyrights whatsoever.
FIELD OF THE INVENTION
The present invention generally relates to performance measures in a telecommunications network. The present invention more particularly relates to providing systems and methods for ensuring the quality of performance measures in a telecommunications system.
BACKGROUND
In 1982, American Telephone and Telegraph (AT&T) was ordered to divest local and regional telephone service. The result of this divestiture was the creation of the Bell Operating Companies (BOC). The Bell System was divided into regions and a BOC was created to service each region. The regions consist of multiple local access transport areas (LATA). A LATA generally comprises at least one major metropolitan area. The regional BOC provides service within the LATAs. Inter-Exchange Carriers (IEC), such as AT&T and Sprint, provide service between LATAs and between regions. In general, federal law prohibits BOCs from providing interLATA service.
The prohibition is not absolute. Under §271 of the Telecommunications Act of 1996, Pub. LA. No. 104-104, 110 Stat. 56 (1996), a BOC may provide interLATA service within a region. However, in order to provide interLATA service, the FCC must determine that the BOC meets a fourteen-point competitive checklist, §271(c)(2)(B), and that granting permission to provide in-region, interLATA service would be in the public interest.
The fourteen point competitive checklist ensures that the BOC is granting competitive local exchange carriers (CLEC) access equivalent to that offered by the BOC to itself and to its retail subscribers. The BOC may satisfy the checklist by: (1) showing that at least one facilities-based local competitor is actually providing local exchange service in the BOC's territory, or (2) by submitting a “Statement of Generally Available Terms,” identifying the steps the BOC has taken to allow competitors to interconnect and obtain the resources the competitor needs to offer service in competition with the BOC.
A BOC may implement a voluntary self-effectuating mechanism (VSEEMS) to help demonstrate its attempt to provide parity to a CLEC. Under a VSEEMS program, the BOC pays the CLEC a penalty if the BOC fails to provide non-discriminatory service to the CLEC. A BOC may also agree to pay the government a penalty for failing to provide non-discriminatory service as a condition for creation of the BOC.
The fourteen-point checklist requires, in essence, that the BOC demonstrate the offering of stable, nondiscriminatory execution of all operations support systems (OSS) functions for the three modes of competitive entry: interconnection, resale and unbundled network elements. OSS functions include pre-ordering, ordering, provisioning, maintenance and repair, and billing for services. The three modes of competitive entry are interrelated. Interconnection refers to the ability of the BOC network and that of a competitive local exchange carrier (CLEC) to communicate with one another. Resale refers to the requirement that the BOC offer services to CLECs at below retail prices. And unbundling requires that the BOC sell a CLEC access to individual components, such as switches or lines, rather than mandating that the CLEC purchase access to a “bundle” of network services.
To demonstrate a non-discriminatory offering, the BOC must implement a process to generate and report performance measures. The BOC must make these measures available to both CLECs and regulatory agencies, including the Federal Communications Commission (FCC) and local state public service commissions.
Compiling and reporting the performance measures is a complex process. The complexity is due primarily to the complexity of the underlying system necessary to provide telecommunications service. Not only is the task or providing performance measures complex, the accuracy of the reports is critical to ensure that the BOC can complete the competitive checklist to the satisfaction of the state public service commission and, ultimately, the FCC. Due to the complexity of the performance measurement process (PMP), an effective and reliable quality assurance (QA) process is necessary to ensure the accuracy of the PMP reports.
The BOC may perform internal audits in an effort to QA the PMP. If the internal audits are insufficient to ensure the accuracy of the PMP reports, the BOC may employ third-party audits. But third-party audits are both time consuming and expensive. An internal audit process that is capable of satisfying regulatory agencies as to the accuracy of the PMP reports is necessary.
Conventional methods of ensuring the quality of a PMP are inadequate. No efficient and reliable method exists to ensure that PMP reports are produced accurately and reliably each month. Additionally, when a new measure is added to the PMP process, conventional systems are unable to provide audit information sufficient to allow an auditor to understand the purpose and possible effects of the change in a timely and efficient manner.
Also, in many cases, although a technical support staff is able to solve problems occurring during the PMP process, the information to efficiently ensure that (1) the support staff correctly performed the repair and (2) the resulting report is accurate do not exist. Additionally, without sufficient detail related to changes occurring in the PMP, it has proven very difficult to successfully implement a PMP change or correction across multiple BOC sites in a consistent manner.
Errors during the PMP sometimes result in inaccurate reporting of performance measures to both regulatory agencies and CLECs. These inaccuracies lead to both short and long-term costs to the BOC. In the short term, the BOC pays fines needlessly under VSEEMS programs for failing to offer parity of service to CLECs. In the long term, the regulatory agencies delay the approval of the BOC offering in-region, interLATA service, a potentially large opportunity cost for the BOC.
One potential approach to ensuring the accuracy of the PMP is implementation of a generic quality process. Various generic quality assurance approaches exist. For example, the International Organization for Standardization (ISO) publishes a set of standards called the ISO 9000 standards that provide a framework an organization can use to ensure that a process meets applicable regulatory guidelines. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) has also published a standard for software quality assurance plans (SQAP). Intended for use in developing and maintaining critical software, the standard provides uniform, minimum acceptable requirements for the preparation and content of Software Quality Assurance Plans (IEEE 730-1998). Also, the National Institute of Standards and Technology has published various documents related to software quality assurance, including a document specifically directed to software error analysis. Although each of these frameworks or publications provides general information for establishing a quality assurance process, they do not provide specific methods for actually implementing a quality assurance program for the processes needed by the BOC.
Generic methods of ensuring the quality of a process offer the advantage of integrating the quality assurance process. However, the generic methods are theoretical. Ensuring the quality of a performance measurement process requires a concrete implementation rather than a theoretical approach.
SUMMARY
The present invention comprises a system and method for ensuring the quality of a performance measurement in a telecommunications network. An embodiment of the present invention comprises a performance measurement data warehouse (PMDW) for storing the information necessary to create service quality measurement (SQM) reports. An embodimen
Gullett Brandon R.
Mahon Olivia G.
Morris Jason D.
BellSouth Intellectual Property Corporation
Cantor & Colburn LLP
Tran Quoc D.
LandOfFree
System and method for performance measurement quality assurance does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for performance measurement quality assurance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for performance measurement quality assurance will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3304953