Facsimile and static presentation processing – Static presentation processing – Size – resolution – or scale control
Reexamination Certificate
1999-02-08
2002-08-27
Wallerson, Mark (Department: 2622)
Facsimile and static presentation processing
Static presentation processing
Size, resolution, or scale control
C358S001100, C358S001900, C358S448000
Reexamination Certificate
active
06441920
ABSTRACT:
TECHNICAL FIELD
The invention relates to electronic prepress and imagesetting systems. More particularly, the invention relates to a system and method managing output in an electronic prepress environment.
BACKGROUND INFORMATION
Printing presses use plates to print ink onto paper and other media. One method used for creating plates has been to expose photosensitive film with the matter to be printed. When the film is developed, the matter imaged on the film is imaged onto a photosensitive plate, sometimes referred to as “burning” a plate. After processing, the plate can be used to print the matter onto a medium. A printing project is referred to as a job. A job can include one or more sheets, where a sheet is the media to be printed on. A sheet can be printed on one or two sides.
In a black and white printing job, there is usually one plate that is used to print black ink. In a color printing job, a different plate is used for each color ink. Typically, a color job will use three colors of ink: cyan, magenta, and yellow. This is because a combination of cyan, magenta, and yellow can be used to make other colors. Often, in addition to cyan, magenta, and yellow, black ink is also used. An additional plate is then required to print the black ink. Occasionally, one or more colors will be printed separately as well, referred to as a “spot color.” That color will also have its own plate.
To print on a press using a plate, the plate is installed on a press. The plate is generally held in place on the press by pair of clamps at opposite sides of the plate, referred to as a head clamp and a tail clamp. The plate is exposed to the appropriate color ink, and the inked plate is placed in contact with the media, such as a paper sheet, that is to be printed. Each image that is printed has a gripper edge. The gripper edge is the edge of a sheet (i.e. printed media) that is pulled through the press. A gripper edge marker is often explicitly included in an image as part of a job at the front end, for example with imposition software, such that the gripper edge marker is visible on the imaged plate. The gripper edge of a plate, which is the edge with the gripper edge marker, is attached to the press with the head clamp. By explicitly imaging the gripper edge marker onto the plate, the front end software ensures that there is sufficient distance between the head clamp and the image content so that the image on the plate can be printed.
Electronic prepress systems have used an imagesetter to receive raster data for imaging onto photosensitive film. The film is then used to create a plate. The imagesetter exposes the photosensitive film pixel by pixel, for instance, by scanning a laser across and down a piece of film. Generally, the laser is scanned more quickly across the film in one direction, referred to as the fast scan direction, and then is moved more slowly down the film, referred to as the slow scan direction. Electronics controls the laser to expose, or refrain from exposing, each pixel in the raster data in a precise and repeatable manner. Recently, platesetters also have been used to create plates directly from raster data without the use of film. Imagesetters, platesetters and other output devices for printing are also referred to generally as print engines or writing engines.
Print engines typically have been served by a dedicated raster image processor (RIP) connected between the print engine and a “front end” computer running imaging application software such as Quark Express™ offered by Quark, Inc. of Denver, Colo. and Adobe Pagemaker™ by Adobe Systems Inc. of Mountain View, Calif. Exemplary front end computers run on operating systems such as Windows NT™, MacOS™ and UNIX™. In a typical configuration, a Macintosh™ front end is connected to a RIP which is coupled with an imagesetter. The RIP interprets the graphic information transmitted to it by the front end computer, and converts the graphic information into raster data that can be imaged by the print engine. The raster data produced by the RIP is configured to match required parameters of both the imagesetter and the media. The imagesetter parameters include imaging resolution, processing speed and specific printing capabilities. The media parameters include the length, width and thickness of the media, as well as the chemical makeup of the photosensitive layer.
Typically, the imaging application software provides output in the format of a page description language (PDL) such as Postscript™ and PDF™ offered by Adobe Systems of Mountain View, Calif. Page description languages describe images using descriptions of the objects contained in the page. Use of page description languages allows pages to be described in a way that can be interpreted appropriately for imaging at various sizes and resolutions. PDL code is generally significantly smaller in data size than the raster data that results from interpreting the PDL code. Use of a page description language therefore allows for faster file transfer. Also, page description languages are machine-independent so that any print engine or other device which understands the PDL can produce an image therefrom.
When PDL image data is received by the RIP, operations performed by the RIP, such as using fonts to lay out text and color processing to create raster data for each color, typically results in one or more raster data bit maps. The raster data produced by the RIP is binary, meaning that each pixel is either on or off. The raster data for each of the colors in a color image is referred to as a color separation. A separation describes a single color plane, such as cyan, magenta, yellow, black, or a spot color.
Each color separation is transferred from the RIP to the output device over a high speed interface. This has historically been a parallel data transfer interface that provides a data transfer rate sufficient to keep the output device operating at a desired operating speed. Typically, the process of RIP processing data to prepare bit map image files for transfer to the output device has been slower than the imaging speed of the output devices. The slower RIP processing speed sometimes causes the output device to remain idle while waiting for a RIP to prepare the next bit map image file. The print engine is generally an expensive capital investment, so full time utilization of the print engine is desirable. Keeping the print engine busy is therefore a goal of modern electronic prepress system design.
The use of a RIP multiplexer (MUX), for example the MULTISTAR® offered by Agfa Corporation of Wilmington, Mass., offers the electronic prepress industry some improvement in data throughput, and associated cost savings, by functioning as a data buffer between one or more RIPs and a print engine. Cost savings and improved efficiency have been realized by either RIP processing an image with a first RIP while transferring a previously RIP processed image to the output device or by storing RIP processed raster data for transfer to the output device at an appropriate time after RIP processing. This multiplexer more fully utilizes the output device, and therefore provides increased throughput.
Typically, for prior art electronic prepress systems, a specific output device configuration had to be connected to the RIP before a job could be processed. For example, a print job requiring that a particular type of imagesetter be used for an output device, or that a particular media type or size be loaded onto the output device, could not be RIP processed into raster data if the particular output device connected to the RIP did not meet the job requirements. Improper output device configuration caused delay or, more frequently, required that a user take some action to physically change the output device connected to the RIP in order to continue processing and outputting image files. Since the electronic and imagesetting systems of the prior art were not only device dependent but media dependent as well, the queuing of rasterized print jobs for different media or output devices was not possible. Thus,
Agfa Corporation
Heffen Ira V.
Sabourin Robert A.
Wallerson Mark
LandOfFree
System and method for output management does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for output management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for output management will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2952596