System and method for optimizing the efficiency of an oil...

Fluid handling – Processes – Involving pressure control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S565260, C137S625690

Reexamination Certificate

active

06666225

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German Application No. DE 100 41 386.2, filed in Germany on Aug. 23, 2000, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a system and method for optimizing the efficiency of an oil supply comprising at least two different oil pressure levels, at least two feed devices for oil volume flow of the oil supply and at least one control slide for controlling at least one of the oil pressure levels.
In known systems for supplying oil to hydraulic systems, in particular, in such systems for automatic transmissions, a large part of the power losses are caused by the supplying of hydraulic actuators. These hydraulic actuators include, for example, clutches and variators in continuously variable transmissions (CVT). The oil supply which permits pressure to be built up at the actuators is implemented by means of one or more feed devices or oil pumps. The necessary pressure level of such pumps is between 15 and 30 bar in the case of step-by-step variable transmissions. In step-by-step variable transmissions, it is necessary to allow for up to 80 bar and higher. Owing to their high drive power, the oil pumps in automatic transmissions are therefore almost always driven by the internal combustion engine by means of a fixed transmission ratio.
The hydraulic pump power P
hyd
is generally as follows:
P
hyd
=&Dgr;P
pump
·Q
pump
·1/&eegr;
pump
Here, &Dgr;p is the pressure difference, Q is the volume flow and &eegr; is the efficiency of the respective pump.
Because the pumps used in automatic transmissions are predominantly what are referred to as constant delivery pumps with a constant delivery volume per revolution, that is to say gearwheel or vane pumps, the delivered pump volume flow is dependent on the rotational speed of the internal combustion engine owing to the fixed transmission ratio of the drive by the internal combustion engine.
However, this disadvantage is accepted because such constant delivery pumps have advantages for high pressure levels owing to their robustness and their low cost as well as their low noise level and the possibility of implementing them in a simple technical way. In addition, these constant delivery pumps have efficiency advantages over pumps with a variable delivery volume per revolution.
In order to keep the power losses in the transmission as low as possible, the delivery volume of the oil pumps must be of such a magnitude that the oil supply is just still sufficient in all the necessary operating states of the transmission.
A problem is then that the dimensioning of the pumps must be defined with reference to operating states at a low engine speed, that is to say with a low rotational speed of the pump and resulting low delivery quantities. When the rotational speeds of the engine and of the pump are correspondingly higher, there is thus a very large excess delivery quantity, as a result of which there is an unnecessary power loss. In addition, this hydraulic power loss rises in accordance with the formula stated above as the pressure level becomes larger because the pump then has to generate a higher pressure difference &Dgr;p between the reservoir pressure level and the necessary pressure level.
In order to counteract this problem, it is known from the general state of the art to use an electrically switchable double chamber pump. This oil pump is divided into two chambers with different delivery volumes per revolution. One of the two chambers can be switched to a pressureless state by way of an electrical switching operation which is passed on to the pump by way of an electrohydraulic valve.
During operation, this means that both chambers feed at the same pressure level at low rotational speeds of the pump or when the actuators' oil quantity requirement is relatively large. The double chamber pump then operates as a large constant delivery pump. As soon as relatively high rotational speeds of the pump are reached and the actuators only demand a small volume flow of oil from the oil supply, the switchable chamber is switched to a pressureless state. The double chamber pump then operates principally only as a small constant delivery pump with the delivery volume of just one of the chambers. In this case, the power loss of the double chamber pump is reduced.
However, this principle also has specific disadvantages. The step-by-step switching only partially resolves the abovementioned problem of the oil supply because within a step there continue to be large ranges in which excess oil quantities are fed.
Further disadvantages arise as a result of the electrohydraulic valve which is additionally required for switching over the pump. Said valve requires corresponding installation space and leads to additional costs. The additional valve also gives rise to further oil leakages which make it necessary to have a larger overall delivery volume of the double chamber pump and thus increase the power loss once more.
An additional disadvantage is the electrical switchability of the double chamber pump, which requires a switching strategy provided specifically for that purpose. This switching strategy is dependent on a large number of factors. These factors, which include, for example, dependences on the rotational speed of the pump, on the oil requirement of the actuators, on the change in leakage rates with temperature, on the change in leakage rates with the service life etc., make it necessary to develop a comparatively costly strategy. In addition, owing to the fluctuations and differences in the abovementioned factors this strategy cannot be an absolute strategy, but rather it must always provide reliability in terms of the delivery quantity before the operation of switching to just one of the chambers. This also disadvantageously gives rise to a further power loss.
Because the electrical switchability of the double chamber pump does not function in the case of a power failure, that is to say in emergency mode, a correspondingly high delivery quantity is always fed in this case, which in turn has disadvantageous effects on the dimensioning of the necessary cooling system so that this cooling system has to be overdimensioned for the normal operation which occurs before the predominantly greater part of the time.
In addition, in automatic transmission there is also the factor that the oil actuators, that is to say the actuators which have to be supplied by the oil pump or pumps, operate at different pressure levels. However, because the oil pump can only feed at one pressure level, the entire delivery volume flow must always be fed at the maximum required pressure of the transmission. The oil for the actuators at a lower pressure level is usually only subsequently throttled from the high pressure level to the necessary lower pressure level, resulting in further very large power losses.
An object of the invention, then, is to provide a system for supplying oil with optimized efficiency, in particular for an automatic transmission which is capable of making available at least two different oil pressure levels, and these at least two oil pressure levels are to be controlled automatically as a function of the system requirements and independently of any external auxiliary power.
This object is achieved according to certain preferred embodiments of the invention by that the at least one control slide has at least two narrowed sections, each of the narrowed sections being assigned one of the feed devices and, depending on a position of the narrowed sections in the control slide, the respective volume flows being automatically divided into the at least two pressure levels for each of the feed devices as a function of an oil requirement in the respective pressure level.
The oil supply is provided by the at least two feed devices which, according to the principle, are independent of one another in size and design. However, it would be appropriate here, in a particularly favorable embodiment of the invention, to use a double chamber p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for optimizing the efficiency of an oil... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for optimizing the efficiency of an oil..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for optimizing the efficiency of an oil... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3155534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.