System and method for noninvasively evaluating a limb...

Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S561000, C073S081000

Reexamination Certificate

active

06659967

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to the measurement of hardness of the tissue of a limb by using a noninvasive technique. More specifically, the present invention relates to a warning device that safeguards against the development of compartment syndrome by relating [harness] hardness to intracompartmental interstitial pressure.
2. Description of the Background Art
The diagnosis of compartment syndrome is made by the direct measurement of intracompartmental interstitial pressure based on a technique developed by Dr. Thomas E. Whitesides, Jr. In this technique, a small amount of fluid is injected into a limb compartment. The pressure necessary to advance the fluid into the compartment is the measurement of the pressure of the compartment. If the intracompartmental interstitial pressure should increase to within 30 mmHg of the diastolic pressure, this could result in irreversible damage of the tissue within the compartment. Treatment for such a condition is emergency surgical release of the fascia overlying the muscle, which is constricting the compartment. Delay in the diagnosis of compartment syndrome and subsequently delay in performing the fasciotomy can result in the needless loss of function, contracture and possible amputation of the limb.
The decision to perform a fasciotomy for a suspected compartment syndrome is frequently difficult. In the classic article by Dr. Thomas E. Whitesides, Jr., “Tissue Pressure Measurements as a Determinant of the Need for Fasciotomy”, Clin. Orthop., 113:43, 1975, even if physicians are well versed in the signs and symptoms of compartment syndrome, the clinical analysis sometimes is indefinite and confusing, resulting in delay in performing the fasciotomy.
According to Dr. Whitesides Jr., the one factor that must be present in a compartment syndrome is increased intracompartmental interstitial pressure. Therefore, the effectiveness of the fasciotomy is based on relieving this pressure and re-establishing tissue perfusion. In order to effectively diagnose compartment syndrome, a technique for measuring tissue pressure has been established. For details of the technique of direct intracompartmental interstitial pressure measurement, refer to the article cited above by Dr. Thomas E. Whitesides, Jr.
Compartment syndrome occurs in skeletal muscles enclosed by osseofascial boundaries. The condition develops when accumulating fluid creates high interstitial pressure within a closed osseofascial space, reducing perfusion of surrounding tissues below a level necessary for viability. As the interstitial pressure within the compartment increases, the expansion of the compartment is limited by the compliance of the osseofascial envelope. Like a balloon about to burst, the envelope becomes less and less compliant as the interstitial pressure increases. The change in compliance can be detected by palpation.
Dr. Bruce Steinberg is the inventor of the device described in U.S. Pat. No. 5,564,435. That device quantitatively measures palpation, linear regression of force applied to volume displaced, and has shown a correlation between quantitative modulus of hardness and the interstitial pressure within a compartment. Dr. Steinberg et al. in an article “Evaluation of Limb Compartments with Suspected Increased Interstitial Pressure”, Clin. Ortho. No. 300, p 248-253, 1994, demonstrates how such a device can be used to assess compartment pressure with quantitative hardness measurements. Dr. Steinberg, however, has found that this particular device is cumbersome because of its difficulty in application. The device must be applied to a limb with a continuous stable force while a piston mounted within the platform moves to compress the limb. Measurements become inaccurate if there is any movement of the limb or the device. In the setting of a painful limb in trauma, this measurement becomes very difficult because the patient has difficulty maintaining the limb still. The device described by Dr. Steinberg in U.S. Pat. No. 5,564,435 requires that two separate forces be applied simultaneously, the continuous stable force for the force plate and a second force to increase the pressure within the piston. The measurements that derive the hardness result from the piston. As the pressure increases and as the piston compresses the limb compartment, measurements of pressure and displacement are simultaneously recorded while the device is held stable against the limb at a known force plate pressure.
The present invention overcomes this complexity by applying only one force to obtain the measurement of both pressure and displacement. This is done by mounting a stable pressure measuring probe where the piston was previously located. In addition, instead of having the platform as stable and nonmovable, the platform is now spring loaded and moves as pressure is applied to the limb. In effect, the probe pushes against the limb and the platform or force plate moves as the probe forces itself into the limb. The displacement of the probe is now measured by the distance between the probe tip and the movable platform. When removed from the limb, the spring loaded platform realigns to an even level with the probe tip (the spring force is slightly greater than the weight of the platform). In this way, the measurement of pressure within the probe is obtained electronically and the distance between the tip of the probe and the platform is measured as well electronically. A quantitative hardness can be obtained by the relationship between probe pressure and platform displacement. This quantitative measurement of palpation can then be used to assess the interstitial pressure within a compartment. This is a significant improvement over the prior art in that one can now apply a device to the limb with one hand and not worry about the difficulty of maintaining a constant force against the limb with one hand, while then pressurizing the piston mounted within the platform with the other hand. Dr. Steinberg has found with the new device application is faster
SUMMARY OF THE INVENTION
It is therefore one of the objectives of this invention to provide a system for noninvasively evaluating a limb suspected of compartment syndrome.
It is also an object of the present invention to evaluate a limb by measuring and recording simultaneous pressure and distance values.
It is a further object of the present invention to make a medical diagnosis on the basis of recorded pressure and distance values.
These and others objects of the present invention are achieved via a noninvasive technique which monitors the condition of limb tissue. More particularly, a noninvasive technique is disclosed for diagnosing and monitoring compartment syndrome. In the preferred embodiment of the invention, a pressure measuring probe is mounted within a spring loaded platform, where the platform is movable and distance is measured relative to the probe. Using this device, one may obtain measurements to assess the hardness of a limb compartment. More particularly, the preferred embodiment of the invention includes an apparatus and method for evaluating the condition of tissue within a limb. The method comprises of the following steps. First applying the apparatus to a limb with a force of application. Second, as this force is increased the change in the pressure of the mounted probe is recorded while the distance that the probe moves into the limb is recorded by the movement of a platform also applied against the limb. The method also includes the step of determining the relationship of multiple points of pressure [within the probe to the distance the probe to the compression measured, formulating a quantitative harness curve] applied to the probe and travel distance of the probe such that a quantitative hardness curve can be formulated. Additionally, this invention also includes a linear regression analysis of the multiple points of the curve to determine a quantitative harness modulus.
The foregoing has outlined rather broadly the more pertinent and important features

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for noninvasively evaluating a limb... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for noninvasively evaluating a limb..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for noninvasively evaluating a limb... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3114485

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.