System and method for measuring round trip delay on the...

Telecommunications – Transmitter and receiver at separate stations – Having measuring – testing – or monitoring of system or part

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S067150, C455S012100, C455S456500, C342S357490, C342S357490, C342S351000, C342S418000

Reexamination Certificate

active

06366762

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates generally to wireless communication systems and, more specifically, to a system and method for determining the position of a user terminal that communicates with an earth orbit satellite. Still more specifically, the invention relates to a system and method for measuring the round trip delay on the access channel between a gateway and a user terminal.
II. Description of the Related Art
There is an increasing need in the wireless communications environment for mobile phone location information. For example, with the advent of satellite telephone communications capabilities, it is important to determine the location of a user terminal (the mobile phone) for various reasons including billing and/or geopolitical boundaries. For example, position is needed to select an appropriate ground station or service provider (for example, a telephone company) for providing communication links. A service provider is typically assigned a particular geographic territory, and handles all communication links or calls with users located in that territory. A similar consideration arises when calls must be allocated to service providers based on political boundaries or various contractual relationships.
One industry in particular in which one can see the importance of position information is the commercial trucking industry. In the commercial trucking industry or delivery business, an efficient and accurate method of vehicle position determination is in demand. With ready access to vehicle location information, the trucking company obtains several advantages. The trucking company can keep the customer apprized of location, route and the estimated arrival time of payloads. The trucking company can also use vehicle location information together with empirical data on the effectiveness of routing, thereby determining the most economically efficient routing paths and procedures.
In the past, vehicle location information has been communicated to the trucking company home base by the truck drivers themselves, via telephones, as they reach destinations and stopovers. These location reports are intermittent at best, because they only occur when the truck driver has reached the destination or stopover and can take the time to phone the trucking company home base. These location reports are also quite costly to the trucking company because in effect they cause substantial down time of the freight carrying vehicle. This down time is due to the fact that to make a location report, the tractor driver must remove his vehicle from route, find a telephone which he can use to phone the home base, and take the time to make the location report. This method of location reporting also leaves room for substantial inaccuracies. For example, truck drivers may report incorrect information either mistakenly or intentionally, or report inaccurate estimates of times of arrival and departure.
Presently, the commercial trucking industry is implementing versatile mobile communication terminals for use in their freight hauling tractors. These terminals are capable of providing two-way communication between the trucking company home base and the truck. Typically, the communications are via satellite between the truck and a network communications center or hub.
Using the radio communication capabilities at each mobile terminal to provide vehicle position determination offers great advantages to the commercial trucking industry. Location reports would no longer be intermittent because the trucking company home base could locate a vehicle at will. No down time of the freight hauling vehicle would be required because the communications necessary for determining location could take place while the truck is en route. Also, inaccuracies in location reports would be virtually eliminated because the trucking company home base would be almost instantaneously ascertaining accurate vehicle location information.
However, using the radio communication capabilities at mobile terminals to provide a vehicle or user position is difficult when both the satellite and the vehicle continuously change their position. That is, when low or medium Earth orbiting (LEO or MEO) satellites are used for transferring signals, and when the user or vehicle changes location rapidly or frequently. Due to the orbit of the satellite and the movement of the vehicle, the range between them continuously changes. This makes it difficult to accurately measure the range between the satellite and the mobile phone, and ultimately the location of the phone on the earth's surface. This problem is further discussed below in an example involving two objects that communicate with each other.
Generally, the range between two objects that communicate with each other can be determined in the following way. The first object transmits a first signal and notes the time of transmission. The second object receives the first signal and immediately transmits a second signal. The first object receives the second signal and notes the total time elapsed between the transmission of the first signal and the reception of the second signal. The first object then determines the round trip delay RTD from the relationship RTD=cD/2, where c is the speed of light and D is the total time elapsed between the transmission of the first signal and the reception of the second signal. The range between the two objects can then be determined from RTD.
Unfortunately, this simple relationship (RTD=cD/2) yields an accurate value of R only if (a) the two objects have fixed positions; and (b) the oscillators of both the sending and receiving units are known and stable. In other words, if one of the objects is moving relative to the other object, and/or the oscillator of one of the transmitters is inherently unstable, the simple relationship does not yield an accurate result. Thus, if the first object is a moving object, such as an orbiting communication satellite, and the second object is another moving object, such as a mobile phone mounted on a vehicle, this relationship does not yield an accurate result. Due to the orbit of the satellite and the movement of the mobile phone, the range between the two changes during the time period D. In this scenario, R
1
is the range between the satellite and the mobile phone at the time the satellite transmits the first signal and R
2
is the range at the time the satellite receives the second signal. Needless to say, it is difficult to determine the actual ranges R
1
and R
2
between the mobile phone and the satellite. The ranges can be determined as a function of the round trip delay RTD of signals between a gateway and a mobile phone. A mechanism is therefore needed to accurately determine RTD.
Previously, since it was not possible to accurately determine either R
1
or R
2
, which are the ranges from the satellite to the mobile phone at two slightly different time instances, from a measurement that involves their sum, it was difficult to effectively determine the position of the mobile phone. If a method to effectively determine R
1
or R
2
is provided, it will be possible to determine the position of the mobile phone. Using R
1
(or R
2
), and the absolute Doppler, which is equivalent to the range-rate, the position of the mobile phone can be determined. Obtaining the true Doppler, which can be used in determining the range rate, is a subject of U.S. Pat. No. 6,137,441, entitled “Accurate Range and Range Rate Determination in A Satellite Communications System”, which is assigned to the assignee of the present invention and is incorporated herein by reference. The technique of that disclosure is only briefly described herein (see Equation 18, infra). Thus an important consequence of determining R
1
and R
2
is that it will then be possible to obtain the position of the mobile phone.
SUMMARY OF THE INVENTION
The present invention is directed to a system and method for determining a round trip delay of signals transmitted between first and second objects, such as a sate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for measuring round trip delay on the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for measuring round trip delay on the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for measuring round trip delay on the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2908388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.