Optics: measuring and testing – By light interference – Using fiber or waveguide interferometer
Reexamination Certificate
2001-05-08
2002-11-26
Porta, David P. (Department: 2882)
Optics: measuring and testing
By light interference
Using fiber or waveguide interferometer
C356S484000
Reexamination Certificate
active
06486961
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to the field of optical network analysis, and more particularly to a system and method for determining the phase response of an optical component under test.
BACKGROUND OF THE INVENTION
An optical network analyzer is a vital tool for determining optical characteristics of optical components, such as fiber Bragg gratings. The optical characteristics determined by an optical network analyzer may include reflectance and transmittance of a particular two port or multiport optical component under test. The reflection or transmission characteristics of an optical component under test are typically determined by measuring the amplitude and phase of optical signals that have been reflected by or transmitted through the component. The phase response characteristics of an optical component under test are often described by group delay or dispersion.
Most conventional group delay measurement techniques were developed for optical network analyzers that utilize non-continuously tunable laser sources. A non-continuously tunable laser source is a laser source that can be tuned across a predefined range of frequencies in discrete frequency steps. A typical technique to measure group delay is to apply an electrical stimulus in the form of intensity or phase modulation to an optical signal, and then measure the electrical response of the transmitted or reflected optical signals using well known phase sensitive electrical detection device, e.g., a lock-in amplifier or an electrical network analyzer. A concern with this technique is that the group delay measurement is indirect, which limits the accuracy of the measurement. In addition, the technique requires a long measurement time to obtain an accurate result. Consequently, a long-term stability of the test setup is required to effectively utilize the technique.
However, continuously tunable laser sources have recently become available. A continuously tunable laser source can continuously sweep a predefined range of frequencies without frequency jumps or mode hops. The availability of continuously tunable laser sources has allowed for development of interferometric methods for measuring the group delay of optical components. The interferometric methods are based on direct measurements of phase differences between interfering optical signals. Typically, Fourier analysis of a heterodyne beat frequency directly related to the sweeping optical frequency of a continuously tunable laser source is used to measure the phase, and consequently, the group delay. A concern with the interferometric methods using Fourier analysis is that the frequency sweep of a continuously tunable laser source is non-uniform. The non-uniformity of the frequency sweep causes a similar non-uniformity in the resulting beat frequency, which introduces an uncertainty in the calculation of the phase by means of the Fourier analysis.
In view of this concern, there is a need for a system and method for efficiently and accurately measuring the group delay of an optical component under test using a continuously tunable laser source.
SUMMARY OF THE INVENTION
A system and method for measuring the group delay of an optical device under test (DUT) utilizes an optical frequency counter in conjunction with a test interferometer to compensate for the non-uniform frequency changes of an input optical signal used by the test interferometer to measure the group delay. The group delay of the optical DUT is measured using the zero-crossings of an AC coupled heterodyne beat signal produced by the test interferometer from the input optical signal. In the measurement of the group delay, phase changes in the heterodyne beat signal caused by the non-uniform frequency changes of the input optical signal are compensated by using the optical frequency counter. In an exemplary embodiment, the optical frequency counter includes a reference interferometer. In this embodiment, the zero-crossings of a reference AC coupled heterodyne beat signal produced by the reference interferometer from the input optical signal are used to detect the optical frequency of the input optical signal and to compensate for the non-uniform frequency changes of the input optical signal. The wavelengths of the reference heterodyne beat signal are measured by detecting the zero-crossings of the reference heterodyne beat signal.
A method of analyzing an optical characteristic of an optical device under test (DUT) in accordance with the present invention includes the steps of generating an input optical signal having a frequency that varies with time into a test interferometer that includes the optical DUT, detecting DUT zero-crossings of a DUT heterodyne beat signal from the test interferometer, and computing the group delay of the optical DUT using a derivative of a DUT zero-crossings function defined by the DUT zero-crossings with respect to one of time and optical frequency of the DUT zero-crossings function. The computed group delay is indicative of a phase response of the optical DUT.
The method may further include the steps of detecting the optical frequency of the input optical signal and compensating for the non-uniform frequency changes of the input optical signal. This step may further include detecting zero-crossings of a reference heterodyne beat signal from a reference interferometer.
In an embodiment, the step of computing the group delay includes calculating the derivative of the DUT zero-crossings function with respect to time, which provides information about changes in phase of the DUT heterodyne beat signal. In this embodiment, the method may further include steps of detecting reference zero-crossings of a reference heterodyne beat signal from a reference interferometer, and calculating a derivative of a reference zero-crossings function defined by the reference zero-crossings with respect to time, which provides information about changes in optical frequency of the input optical signal in the DUT and reference interferometers. In an embodiment, the group delay of the optical DUT is computed by dividing the derivative of DUT zero-crossing function by the derivative of the reference zero-crossings function.
In another embodiment, the step of computing the group delay includes calculating the derivative of the DUT zero-crossings function with respect to optical frequency. The derivative of the DUT zero-crossing function with respect to optical frequency may be calculated by sampling the DUT heterodyne beat signal in equal frequency increments. The DUT heterodyne beat signal may be sampled in equal frequency increments using a clocking signal, which may be derived by detecting the optical frequency of the input optical signal. In an embodiment, reference zero-crossings of a reference interferometer are used as the clocking signal to sample the DUT heterodyne beat signal in equal frequency increments.
A system for analyzing an optical characteristic of an optical DUT in accordance with the present invention includes a light source, a test interferometer, a DUT zero-crossing detector, and a processor. The light source is configured to generate an input optical signal having a frequency that varies with time. The DUT zero-crossing detector is configured to detect DUT zero-crossings of a DUT heterodyne beat signal from the test interferometer. The processor is configured to calculate a derivative of a DUT zero-crossings function defined by the DUT zero-crossings with respect to a variable of the DUT zero-crossings function. In addition, the processor is configured to compute the group delay of the optical DUT using the derivative of the DUT zero-crossings function.
The system may further include an optical frequency counter that is configured to detect the optical frequency of the input optical signal. The detected optical frequency is used to compensate for the frequency sweep non-uniformity of the light source. The optical frequency counter may include a reference interferometer that generates a reference heterodyne beat signal from the input optical signal. In th
Baney Douglas M.
Szfraniec Bogdan
Agilent Technologie,s Inc.
Porta David P.
LandOfFree
System and method for measuring group delay based on... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for measuring group delay based on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for measuring group delay based on... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2988364