System and method for managing overflow of moistening fluid...

Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – Envelope sealing type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S442200, C156S578000, C118S268000

Reexamination Certificate

active

06808594

ABSTRACT:

FIELD OF THE INVENTION
The invention disclosed herein relates generally to mailing systems, and more particularly to a system and method for managing overflow of moistening fluid in a mailing machine.
BACKGROUND OF THE INVENTION
Mailing systems, such as, for example, a mailing machine, often include different modules that automate the processes of producing mail pieces. The typical mailing machine includes a variety of different modules or sub-systems each of which performs a different task on the mail piece. The mail piece is conveyed downstream utilizing a transport mechanism, such as rollers or a belt, to each of the modules. Such modules could include, for example, a singulating module, i.e., separating a stack of mail pieces such that the mail pieces are conveyed one at a time along the transport path, a stripping/moistening module, i.e., stripping open the flap of an envelope, wetting and sealing the glued flap of an envelope, a weighing module, and a metering/printing module, i.e., applying evidence of postage to the mail piece. The exact configuration of the mailing machine is, of course, particular to the needs of the user.
Typically, a stripping/moistening module includes a structure for deflecting a flap of a moving envelope away from the envelope's body to enable the moistening and sealing process to occur. The deflecting structure typically includes a stripper blade that becomes inserted between the flap of the envelope and the body of the envelope as the envelope traverses the transport deck of the mailing machine. Once the flap has been stripped, the moistening device moistens the glue line on the envelope flap in preparation for sealing the envelope. Moistening systems generally fall into two categories: contact and non-contact moistening systems. Non-contact moistening systems generally spray moisture onto the envelope flap with a nozzle and mechanical pump system. The mechanical pump is supplied with moistening fluid from a reservoir and sprays the fluid through the nozzles and onto the envelope flap. The flap is then closed and sealed, such as, for example, by passing the closed envelope through a nip of a sealer roller to compress the envelope and flap together, and the envelope passed to the next module for continued processing.
A contact moistening system generally deposits a moistening fluid, such as, for example, water or water with a biocide, onto the glue line on a flap of an envelope by contacting the glue line with a wetted applicator. In contact systems, the wetted applicator typically consists of a contact media such as a brush, foam or felt. The applicator is in physical contact with a wick. The wick is generally a woven material, such as, for example, felt, or can also be a foam material. At least a portion of the wick is wetted with the moistening fluid from a reservoir. The moistening fluid is transferred from the wick to the applicator by physical contact pressure between the wick and applicator, thereby wetting the applicator. A stripped envelope flap is guided between the wick and applicator, such that the applicator contacts the glue line on the flap of the envelope, thereby transferring the moistening fluid to the flap to activate the glue. The flap is then closed and sealed, such as, for example, by passing the closed envelope through a nip of a sealer roller to compress the envelope and flap together, and the envelope passed to the next module for continued processing.
Regardless of the type of system used, as noted above it is necessary to have a reservoir that holds the moistening fluid to be used by the mailing machine. As the moistening fluid is used during processing of mail pieces, it is necessary to replace the fluid in the reservoir. This is generally performed utilizing a user replaceable bottle that is inserted into the reservoir and empties into the reservoir as the level of moistening fluid in the reservoir decreases. When the bottle has emptied, it is replaced with a new bottle-containing a new supply of moistening fluid.
There are problems, however, with conventional moistening systems in which a reservoir is utilized. In many applications, the moistening fluid from the reservoir is supplied to the moistening device (either contact, i.e., wick/applicator, or non-contact, i.e., mechanical pump) via a gravity pump. As such, it is not possible to completely seal the reservoir, as this could cause changes in pressure within the reservoir and disrupt the operation of the gravity pump. Typically, the top of the reservoir is open to prevent the build-up of any back-pressure and allow the replaceable bottle to be inserted therein. To prevent the moistening fluid in the reservoir from overflowing, it is generally desirable to limit the amount of moistening fluid in the reservoir during normal operation. There are circumstances, however, that can result in the level of the moistening fluid within the reservoir exceeding the normal operating level. For example, repeated raising and lowering of the replacement bottle, such as, for example, to determine if there is moistening fluid still present in the bottle, can cause the moistening fluid within the reservoir to attain a higher than intended level. Additionally, improper sealing of the replacement bottle or failure of the valve device on the replacement bottle can each cause the moistening fluid level within the reservoir to exceed the normal operating level. Since it is not possible to seal the reservoir completely, there is a risk of moistening fluid escaping from the reservoir and causing damage to surrounding components, especially electrical components, or leaking onto the surface supporting the mailing machine, i.e., the customer's tabletop. Additionally, even if the reservoir has not overflowed or exceeded the intended level, the problem still exists as to moving the mailing machine without the moistening fluid sloshing over the sides of the reservoir and leaking out of the mailing machine.
Typically, in any circumstance where there is leakage of the moistening fluid from the mailing machine and onto the customer's tabletop, the customer interprets it as a potential operational or safety problem and initiates a service call. If the leakage was due to a defective or improperly sealed replacement bottle or movement of the machine, the service call is unnecessary and the customer incurs additional unnecessary expenses as well as down time of the mailing machine.
Thus, there exists a need for a system and method for managing overflow of moistening fluid in a mailing machine.
SUMMARY OF THE INVENTION
The present invention alleviates the problems associated with the prior art and provides a system and method for managing overflow of moistening fluid in a mailing machine.
In accordance with the present invention, an overflow pipe is provided in the reservoir. The overflow pipe is positioned over a sump located beneath the reservoir. The top of the overflow pipe in the reservoir is located slightly above the moistening fluid normal operating level in the reservoir. Under normal operating conditions, i.e., the moistening fluid remains at or below the normal operating level within the reservoir, the overflow pipe has no impact on the moistening system. In the event the level of the moistening fluid rises above the normal level to a point above the top of the overflow pipe, the moistening fluid will flow through the overflow pipe and into the sump. The sump contains an absorbent material to absorb any moistening fluid that flows into the sump, thereby preventing the moistening fluid from sloshing out of the sump if the mailing machine is moved. The moistening fluid absorbed by the absorbent material will eventually evaporate, and the overflow of the moistening fluid will have been completely contained within the mailing machine without any type of operator assistance or possibly even knowledge of an overflow. Thus, in the event the moistening fluid level rises above the normal operating level within the reservoir, the moistening fluid will drain into the sump before the r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for managing overflow of moistening fluid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for managing overflow of moistening fluid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for managing overflow of moistening fluid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281105

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.