System and method for maintaining lock of a phase locked...

Data processing: measuring – calibrating – or testing – Testing system – Of circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S371000

Reexamination Certificate

active

06625559

ABSTRACT:

THE FIELD OF THE INVENTION
The present invention relates generally to a clocking system and method associated with a phase locked loop, and more specifically, to a clocking scheme for maintaining lock of a phase locked loop within an integrated circuit during a normal operation mode and a test mode in which the clock signal is halted, and during the switching from the normal operation mode to the test mode.
BACKGROUND OF THE INVENTION
The sophistication of a present-day electronic system is a result of complex functions handled by digital integrated circuits making up the electronic system. Digital integrated circuits comprise the majority of electronic circuits in computers and other digital electronic products. Digital integrated circuits can be configured, for example, as a central processing unit (CPU), a programmable logic array (PLA), an application specific integrated circuit (ASIC), or a digital signal processor (DSP). Both the sophistication and speed of operation of these digital integrated circuits have rapidly increased due to improvements in integrated circuit manufacturing and design technologies resulting in smaller and faster devices.
The performance of a computer or electronic device is increased if the delivery time of the central clocking signal is equal to all integrated circuits and components thereof. Unequal delivery times to different components of the system is defined as skew. Therefore, skew basically is a measure of the quality or lack of quality of delivery time of a central clock to different components of the system. To increase the quality of the system, it is desirous to minimize the skew of the system. One factor contributing to the skew of a system is the location of various integrated circuits within the system. The physical distances from the clock to various destination points of the system will differ. As is known in the art, differing physical lengths of conductors equates into differing delay times to the various integrated circuits. In addition to the above-described skew associated with the delivery of the clock signal to integrated circuits within the system, there is also a skew associated with a clock delivery scheme within each integrated circuit.
As is known in the art, the skew associated with delivering the clock to various integrated circuits located at different distances from the central clock is easily minimized by providing conductors of equal lengths between the central clock and the various integrated circuits through use of additional wiring or delay elements provided in the conductors. However, this strategy of using the same conductor lengths or delay components within a particular integrated circuit is not feasible due to a significant difference in operating speed of one integrated circuit as compared to another integrated circuit. In some cases, the operating speed of two integrated circuits may vary by as much as 50 percent.
One solution to addressing the varying operation speed of integrated circuits within a system is to incorporate a phase locked loop at the input of a clock signal to an integrated circuit. A phased locked loop provides a self-correcting element to the clock signal within a particular integrated circuit so that there is minimal clock variation from integrated circuit to integrated circuit within an overall system. In the form of an example, if a clock takes 3 nanoseconds to be distributed throughout the first integrated circuit once received at the input of the first integrated circuit and the clock takes 1.50 nanoseconds to be distributed throughout a second integrated circuit once received at the input of the second integrated circuit, then there is a 2:1 ratio in the propagation speed of the distributed clock signals. Therefore, there is a 1.50 nanosecond skew between the first and second integrate circuits. A phase locked loop attempts to compensate for this skew. However, depending upon the quality of electronic components used in the phase locked loop and the design of the phased locked loop, there remains a skew associated with the system since it is virtually impossible to design and implement an ideal phase locked loop.
In order to maximize the compensation of a phase locked loop, it is important to properly select a feedback point from which the phase locked loop feedback path will be generated. Thus, a feedback point for the phase locked loop feedback path should be chosen corresponding to a final clock location within an integrated circuit. However, in current designs, a clock signal, once to the integrated circuit, is propagated to up 40,000 final clock locations. Therefore, it is impractical to determine the best location for the feedback point. Rather, one of the 40,000 final clock locations is randomly chosen as the feedback point.
A critical aspect of an electronic system is that the various components of the system must be tested to ensure proper operation and interconnection. In order to perform a test procedure (test mode), the central clock of the system is halted or stopped. Known test data is then scanned into the various electronic components of the system. The clock is then restarted at the maximum operating frequency of the system for a minimal number of clock cycles. The system clock is again halted and data is scanned out of the various electronic components. The operation of the system can be analyzed by comparing the scanned out data to expected results. This process, called “stop-and-scan” or “stop-and-step”, ensures that data is moving within the system from location to location meeting correct timing requirements.
A significant issue associated with testing the electronic device is that the clock of the device is halted or stopped. Since the feedback point of the phase locked loop feedback path is coupled to the clock, the feedback path is broken and the phase locked loop does not maintain lock during a clock halt. As is known in the art, if a phase locked loop does not maintain lock, the function of the phase locked loop is lost. One known solution which addresses the issue of a halted clock resulting in a loss of lock for a phase locked loop is to generate a copy or “dummy” clock. A real clock tree can be masked off near the root of the tree to cause a clock halt, but the copy clock tree is an unmasked major branch off of the root of the clock tree. Since the copy clock tree is not masked off or halted, the clock of the real clock tree can be halted while the feedback point of the phase locked loop is generated from the copy clock, thereby maintaining its feedback path and its lock. Further, masking the real clock facilitates test procedures in that the real clock can be restarted, n-stepped, and re-halt while in the test mode.
The disadvantage of utilizing a copy of the real tree branch for maintaining lock of the phase locked loop is that it is extremely difficult to match and track the real clock tree in latency over a process and operating conditions. To the degree that this mismatch and mis-track of the copy clock is inaccurate, there is a direct increase in integrated circuit clock skew between the internal clock of the integrated circuit and an external clock. This clock skew is a severe disadvantage in normal, non-test mode. In some cases, the clock slew associated with a phase locked loop utilizing a feedback point from a copy clock may be greater than having no phase locked loop compensation. Therefore, there is a need for a clocking system and method which can maintain lock of a phase locked loop feedback path in either a normal operation mode or a test mode, while minimizing the overall skew of the system.
SUMMARY OF THE INVENTION
The present invention provides a system and method capable of maintaining lock of a phase locked loop feedback path in both a normal operation mode and a test mode, and during the switching of the system from the normal operation mode to the test mode, while minimizing the overall skew of the system.
One embodiment of the present invention provides a method of maintaining lock of a phase locked loop feedback path within

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for maintaining lock of a phase locked... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for maintaining lock of a phase locked..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for maintaining lock of a phase locked... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3007682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.