System and method for interfacing with a personal telephony...

Telephonic communications – Telephone line or system combined with diverse electrical... – Having transmission of a digital message signal over a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S102020, C379S088130

Reexamination Certificate

active

06823050

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates in general to a system and method for interfacing with a personal telephony recorder. More particularly, the present invention relates to a system and method for providing input to a personal telephony recorder through a variety of means designed to minimize interruption of a telephone call.
2. Description of the Related Art
Voice communication is the most common and one of the oldest forms of real-time remote communications. Real-time remote forms of communications are very good alternatives to face-to-face meetings, in which real-time communication is an important aspect. Voice communications are used for casual conversations, to conduct business, to summon for help in an emergency, to access special services (such as banking, retrieving messages), etc.
There are numerous types of devices operating over numerous types of networks to facilitate voice communications. Most of the voice-capable networks are also capable of transmitting data. The most common voice communication device is the traditional telephone operating over the Public Switched Telephone System (PSTN), also known as the Plain Old Telephone System (POTS). Through the PSTN, telephones are linked using complex switching systems at central offices or exchanges that establish a pathway for voice to be transmitted and received between one or more of the telephones. With appropriate devices, such as modems, for examples, the PSTN can be used for the transmission of data. The PSTN is still one of the most reliable networks for voice communication.
Voice communication can also be facilitated over the Internet or other such networks. Computers connected to the Internet first convert the voice into digital information and then convert the information into data packets. The packets are created according to the Transmission Control Protocol (TCP), a set of rules used with the Internet Protocol (IP) to send data in the form of packets between computers over the Internet. IP handles the actual delivery of the data while TCP keeps track of the individual data packets, into which the voice or other data is divided, for efficient routing through the Internet. The process of transmitting voice over the Internet or other such networks is called voice-over-IP. Voice communication through the Internet is not as reliable as it is through the PSTN. Internet-type networks were designed for data transmission where “real-time” transmissions are not necessary. The speed with which the packets move from one user to the other is very dependent on the type of connection each user establishes to the Internet, the type of computers/communication lines that exist between the two users, the amount of traffic through the Internet, etc.
Mobile phones and the wireless mobile network provide yet another method for voice communication. Through short-wave analog or digital transmissions, a user establishes a wireless connection from a mobile telephone to a nearby transmitter. Generally, mobile telephone service is available in urban areas and along major highways. As the mobile telephone user moves from one cell or area of coverage to another, the mobile telephone is transferred from one transmitter to the next. Today, the mobile network may be accessed not only by traditional personal mobile phones but also by Personal Data Assistants (PDAs), notebook computers with special communications cards, combination devices, etc. Many of these networks are capable of also transmitting through a number of existing protocols. Voice communication through the mobile network is also not as reliable as voice communication through the PSTN. Depending on the geography, certain areas may have better receptions than others. In large cities, for example, reception may be affected, for example, by big buildings, etc. A user who moves into a no-reception “pocket” can be “dropped” from the call. A user may also be dropped while being transferred from one transmitter to the next. For example, a transmitter may be at full capacity and thus not be able to handle additional users.
Satellites provide another medium through which voice can be transmitted. A satellite is a specialized wireless receiver/transmitter launched by a rocket and placed in orbit around the earth. There are hundreds of satellites currently in operation. Geostationary satellites, the most common type of satellite, orbit the earth directly over the equator remaining over the same spot at all times. A geostationary satellite can be accessed using an antenna aimed at the spot in the sky where the satellite hovers. A low-earth-orbit (LEO) system employs a large fleet of satellites in a circular orbit at a constant altitude of a few hundred miles over the geographic poles. An LEO satellite system operates similarly to a mobile phone network where users are transferred from satellite to satellite. As with any other wireless system of communication, reliability is a concern. The connection to the satellite may be affected by such things as weather, obstacles between the user and the satellite (such as being inside a building).
These and other types of networks through which voice may be transmitted are linked with one another to facilitate voice communication across all of the networks. For example, a mobile phone user may establish a telephone call with a user connected through the PSTN, a user having a satellite phone, a user connected through the Internet, etc. In addition, communication may be established between more than two users. Some telephone devices and services are “three-way” capable and establish communication between three users. Certain devices and services have the capability to conference three or more users. A telephone conference allows multiple parties to talk to each other in real time.
Typically, a conference leader contacts a telecommunications service provider and reserves a conference bridge, a computer-controlled device for interconnecting callers. The user may reserve a certain number of telephone lines at a specific date and time. The conference leader may provide each user with an access number and/or password/access code. The users may dial in from any type of voice-capable communications device that can access the bridge. The leader may also select dial-out service for some or all of the other users, where the leader provides bridge with the users' phone numbers, and the bridge either automatically or through an operator dials each user's telephone number at the scheduled time of the conference to connect the user to the conference bridge.
One challenge of telephone devices is the difficulty of making requests and sending commands to the device during an on-going telephone call. This is particularly challenging in remote situations where the user communicates with the personal telephony recorder using a handheld communication device and sends commands to the device through a telephone network. Traditional commands that are sent to a telephone device are limited in scope or otherwise interrupt the on-going telephone call.
What is desired, therefore, is a method and system that provides unobtrusive ways of communicating with a telephone device. What is also needed is an advaced personal telephony recorder that is capable of receiving commands in a variety of ways depending upon the type of telephone device being used by the telephone participant.
SUMMARY
It has been discovered that a personal telephony recording (PTR) system can record a telephone conference and can replay the recording after the end of the conference or during the telephone conference. The PTR is capable of establishing a telephone conference between two or more users. The users can connect to the PTR from different types of networks. One user may, for example, connect through the mobile network, another may connect via satellite, and another may connect through the Internet. Each user may connect to the PTR using a device having one or more types of communication lines. For example, a PDA may connect to the PTR through a voice

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for interfacing with a personal telephony... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for interfacing with a personal telephony..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for interfacing with a personal telephony... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3359718

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.