Surgery – Diagnostic testing
Reexamination Certificate
2002-06-28
2004-11-16
Marmor, Charles (Department: 3736)
Surgery
Diagnostic testing
C128S903000, C128S920000, C128S897000, C345S215000
Reexamination Certificate
active
06817979
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to communication of user information via a mobile terminal and, more particularly, to systems and methods for interacting with a physiological model created for a user via a physiological sensor device and a mobile terminal.
BACKGROUND OF THE INVENTION
Good physical fitness is key to maintaining good health and fighting disease. Medical evidence has shown that excess body fat, for example, poses a major threat to health and longevity. Excess body fat is linked to major physical threats, such as heart disease, cancer, and diabetes. Consistent exercise is an important factor in maintaining proper weight and good health.
Motivation plays a significant role in one's interest in continuous and productive exercise. Although exercise videos, programming, and literature abound, many people quickly lose interest in such short-term motivational tools. Such conventional exercise enhancements generally fail to provide the requisite feedback needed to keep an individual motivated in a given exercise regimen.
The inability to provide real-life information concerning fitness training that associates exercise to physical fitness results in an easily perceivable manner limits the usefulness of conventional exercise motivational techniques over the long term.
As contemporary lifestyles have become increasingly fast-paced and complicated, the number of personal electronic devices carried on the person has increased. It is not uncommon for an individual to carry a cellular phone, a PDA, some form of calculator, a pager, and a portable personal medical device, such as a body fat measuring device, heart rate monitor or pedometer, for example. The inconvenience of physically transporting and accounting for such devices often results in eliminating certain devices from one's personal inventory of devices. In many cases, personal medical devices, such as heart rate monitoring devices, which can enhance exercise regimens and provide motivation for healthier lifestyle habits, are cast aside in favor of more utilitarian devices, such as the now ubiquitous cellular phone.
There is a need for integration of mobile communications and health promoting devices, such as heart rate monitoring devices. There is a need for improved motivational techniques that allow individuals to associate real-life physiological data with the individual's progress toward particular fitness goals. The present invention addresses these and other needs, and provides additional features and advantages over conventional implementations and techniques.
SUMMARY OF THE INVENTION
The present invention is directed to a system and method of interacting with a virtual physiological model of a user with use of a mobile communication device. According to one methodology of the present invention, physiological data associated with the user is acquired from the user. The physiological data is transmitted to the mobile communication device, preferably with use of a wireless communication protocol. The methodology further involves using the mobile communication device to communicate the physiological data to a network server. The physiological data is integrated into a virtual physiological model of the user.
The acquired physiological data can include one or more of the user's weight, caloric consumption, blood pressure of the user, information concerning the user's diet, and anatomical measurements of the user, for example. A number of physical characteristics of the user can be developed using the physiological data of the virtual physiological model. Such physical characteristics of the user can include one or more of muscle mass, percent body fat, anatomical dimensions, energy consumption, stress level, heart rate characteristics, and rate of recovery from an exercise regimen, for example.
In accordance with another embodiment, a method of interacting with a virtual physiological model of a user involves acquiring physiological data associated with the user and transmitting the physiological data to a network server using the mobile communication device. The physiological data is integrated into the virtual physiological model of the user. Fitness data is generated using physiological data associated with the virtual physiological model of the user. The fitness data is communicated to the user.
The fitness data can include heart rate data associated with a specified period of time, a rate at which the user recovers from an exercise regimen, a mapping of heart rate data to each of a number of physiological data states or user depictions developed from the virtual physiological model. The fitness data can also include stress level data associated with the user and one or both of percent body fat data and muscle mass of the user.
Communicating fitness data to the user can involve communicating a depiction of the user based on the physiological data associated with the virtual physiological model of the user. Changes to the user's depiction can be effected in response to changes to the physiological data associated with the virtual physiological model of the user. For example, changes to one or more anatomical dimensions of the user can be depicted. The depiction of the user can include one or both of graphical and textual information based on the physiological data associated with the virtual physiological model of the user.
Historical physiological data of the virtual physiological model can be analyzed to predict changes in the fitness data over time. For example, historical physiological data of the virtual physiological model can be analyzed to predict changes in the fitness data in response to a set of input data applied to the virtual physiological model of the user. The set of input data can include a set of current physiological data acquired from the user or a set of test physiological data input by the user.
According to another embodiment of the present invention, a mobile physiological information system includes a mobile communication device and a physiological sensor device adapted for acquiring physiological data associated with the user. The system further includes a transfer device communicatively coupled to the physiological sensor device and the mobile communication device. The transfer device transmits the physiological data to the mobile communication device for subsequent integration into a virtual physiological model of the user.
In accordance with another embodiment of the present invention, a mobile physiological information system communicates with a network and a network server. The system includes a fitness data engine operable at the network server, a mobile communication device, and a physiological sensor device adapted for acquiring physiological data associated with the user. The system further includes a transfer device communicatively coupled to the physiological sensor device and the mobile communication device. The transfer device transmits the physiological data to the mobile communication device, and the mobile communication device communicates the physiological data to the fitness data engine. The fitness data engine integrates the physiological data into a virtual physiological model of the user and generates fitness data using physiological data associated with the virtual physiological model of the user for subsequent transmission to the user.
The above summary of the present invention is not intended to describe each embodiment or every implementation of the present invention. Advantages and attainments, together with a more complete understanding of the invention, will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.
REFERENCES:
patent: 5553864 (1996-09-01), Sitrick
patent: 5572646 (1996-11-01), Kawai et al.
patent: 5736982 (1998-04-01), Suzuki et al.
patent: 5911129 (1999-06-01), Towell
patent: 5966526 (1999-10-01), Yokoi
patent: 6091410 (2000-07-01), Lection et al.
patent: 6167362 (2000-12-01), Brown et al.
Astorino Michael
Marmor Charles
Nokia Corporation
LandOfFree
System and method for interacting with a user's virtual... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for interacting with a user's virtual..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for interacting with a user's virtual... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3355660