System and method for integrating electrical power grid and...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000

Reexamination Certificate

active

06516326

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to the sending and receiving of electrical power data between different Energy Management Systems (EMS). Currently, there are about a dozen large EMS vendors and many smaller vendors. Each EMS vendor data format is inherently incompatible with any other EMS data format. More particularly, the present invention relates to an automated system and method to integrate, convert and maintain power grid information from various EMS vendors data formats into a single electrically connected database.
2. Description of the Prior Art
The electrical power generation industry has long enjoyed a regulated monopoly over the generation and transmission of electrical power and can influence service, policy and pricing to the consumers within their specific geographical area. Electrical power transfers are based on detailed network models encompassing only a specific geographical area with significantly less detailed network models of the surrounding area. Transferring power outside of the limited geographical area containing detailed electrical network models is problematical simply because of the lack of a unified network model. Consequently, such electrical power transfers are very limited in their range and frequency.
As a result of recent changes in Federal and State regulations, electric utilities are transitioning to a competitive market. The impact of competition is driving the market to seek out low cost energy producers and create a larger commodity market for electric power. Consequently, the Federal Energy Regulatory Commission (FERC) has mandated change through the issuance of Orders 888 and 889 (dated Apr. 24, 1996) and Order 2000 (dated March 2000) to encourage wholesale competition. Order 888 requires utilities to provide all power producers open access to the Transmission Grid and Order 889 requires utilities to establish electronic systems to share information about available transmission capacity. Order 2000 requires the creation of a Market-Reliability System to be implemented to ensure the reliability of the grid and provide non-discriminatory transmission access by 2005.
Accurately calculating the capacity of the transmission system and to efficiently manage congestion on the system requires that much larger detailed models of the network must be constructed that spans entire regions rather than one utility area. These models are the foundation upon which grid facility status and changes are monitored, risks managed and power transfers scheduled and routed. Without this fundamental model information (which does not exist), grid reliability and security is at risk and dependable market trading is impaired. Keeping models up to date will become an even more demanding task when the NERC policy on exchange of real-time network data is deployed on Sep. 1, 2001. Compliance with this policy will require automated model updating processes.
The operation (generation, transmission and distribution) of electrical power generation facilities employ a proprietary Energy Management System (EMS) that is tightly coupled to a particular operating system, computer manufacturer and a specific version of the associated application program. Examples of EMS vendors include the following: GE/Harris, ESCA, Siemens, Open Systems International (OSI), TeleGyr and Power Technologies (PSS/O). The nature of the various EMS vendors is to closely guard their proprietary secrets of operation, which includes the format of their data. The present state of the art is such that sending or receiving electrical power from different EMS vendors is difficult at best to perform without significant advance notice. Minimal transactions between different EMS formats are typical due the time required to translate the data formats from one EMS vendor's :format to another.
The lack of a detailed power system network topology when spanning three or more EMS vendor data formats can result in electrical power scheduling failures. Consider the network topology for these three bordering companies: company A, company B, and company C. Company A has topological connections only to company B. Company B has topological connections only to company C. When company A schedules a power transfer to company C, company B does not know about the power transfer although the actual wires are in the company B area. The scheduling error occurs when company B attempts to send power through the same lines that are already in use by companies A and C. This case is rare, however, it has been known to occur and is the direct result of not having a single model that encompasses all three of the companies areas.
Generally, at least 24 hours advance notice are required by any given EMS vendor to send or receive electrical power to a different EMS due to the problems associated with dynamically balancing the generation capacity and demand load for a given time interval starting from different data formats. This time period can be significant in the case of an unpredictable emergency caused by natural phenomena such as a hurricane or unusually high temperatures during the summer months.
The problem of sharing data between different EMS vendors in a timely fashion has been partly addressed in the development of a standard exchange format known as the Common Information Model (CIM) sponsored by the Electrical Power Research Institute (EPRI). The CIM is an abstract model that represents all of the major objects typically contained in an EMS information model. A typical EMS data format will contain power system resources such as: companies, divisions, substations, transformers, generators, busbars, A/C lines, D/C Lines, capacitor banks, reactor banks, energy consumers (loads), breakers, switches, conductors, connectivity nodes, fuses, jumpers and grounds at various voltage levels.
The current CIM was based on U.S. Pat. No. 5,604,982 to Nuttall et al. Feb. 18, 1997. This patent relies on a single source information model that separates the data format and relationships through the use of surrogate keys as described on page 11. Changing a surrogate key would make all objects associated with the key change. The primary concern was to allow various programs access to a single data source. The primary concern here is with network models and building a single network model database from raw data of various formats. There is a lack of instruction on how to convert various data formats into the CIM format and further a lack of instruction on how to merge data from multiple CIM compliant databases. Nuttall et al. does teach how to construct a discrete hierarchical relationship based on physical quantification. However, these relationships have inherent limitations that must be expanded in order to produce and maintain composite network models.
Significant effort is required to convert the various EMS data formats into the CIM due in part because of the different terminology used to describe the same physical equipment. A database capable of recalling specific power systems equipment requires significant programming effort simply because of the vast amount of equipment involved and the numerous types of equipment to be classified. The various EMS's differ in their internal data format and the relationships between the various elements or equipment. The actual migration of raw EMS extracted data into the CIM format requires computer programming skills and specific electrical power modeling knowledge.
When an EMS vendor converts their internal data format to the CIM format, the geographically bordering EMS must also convert their data to the CIM format. Electrical power transfers are generally limited to about 1000 miles due to the degradation of electrical flow though the wires. This distance could span multiple EMS data formats. Typically, power transfers occur only on bordering EMS's and rarely three or more different EMS vendor data formats are involved in any given electrical power flow transaction.
The data contained in the CIM format from two differen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for integrating electrical power grid and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for integrating electrical power grid and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for integrating electrical power grid and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132384

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.