Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Operations research or analysis
Reexamination Certificate
2000-02-22
2002-02-05
Stamber, Eric W. (Department: 2162)
Data processing: financial, business practice, management, or co
Automated electrical financial or business practice or...
Operations research or analysis
C705S001100, C705S016000, C705S022000, C705S028000, C700S096000, C700S100000, C700S103000, C700S106000, C700S109000, C700S117000, C700S222000
Reexamination Certificate
active
06345259
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to computer integrated manufacturing and, more particularly, to a system and method for integrating a computerized business system, a computerized manufacturing system, and a laboratory information management system.
2. Related Art
Recent developments in computer and computer-related technology have enabled the use of computers in numerous business applications. Almost every facet of today's industry is implemented using computer systems in some manner. Computerization has become necessary for businesses to remain in a competitive posture.
Computer systems are used to automate processes, manage large quantities of information, and provide fast, flexible communications. One area enjoying widespread computerization is that of the business environment. Many businesses from small stores, to professional offices and partnerships, to large corporations have computerized their business functions to some extent. Computerized business functions can include billing, order-taking, scheduling, inventory control, record keeping, and the like. Such computerization can be accomplished by using a business applications system, running business applications software packages.
There are many business applications software packages available to handle a wide range of business functions, including those discussed above. One such package is the SAP R/2 System available from SAP America, Inc., 625 North Governor Printz Blvd., Essington, Pa. 19029.
The SAP R/2 System is a business applications software package designed to run on an IBM or compatible mainframe in a CICS (Customer Interface Control System) or IMS (Information Management System) environment. For example, SAP may use CICS to interface with terminals, printers, databases, or external communications facilities such as IBM's Virtual Telecommunications Access Method (VTAM).
SAP is a modularized, table driven business applications software package that executes transactions to perform specified business functions. These functions may include order processing, inventory control, and invoice validation; financial accounting, planning, and related managerial control; production planning and control; and project accounting, planning, and control. The modules that perform these functions are all fully integrated with one another.
Another area that has been computerized is the manufacturing environment. Numerous manufacturing functions are now controlled by computer systems. Such functions can include real-time process control of discrete component manufacturing (such as in the automobile industry) and process manufacturing (such as chemical manufacturing through the use of real-time process control systems).
Directives communicated from the business systems to the manufacturing systems are commonly known as work orders. Work orders can include production orders, shipping orders, receiving orders, and the like.
However, the computerization of business systems within the business environment and the computerization of manufacturing systems within the manufacturing environment have followed separate evolutionary paths. This often results in an incompatibility between the different systems. Specifically, work orders communicated from the business systems may have a context and a format which are not readily compatible with the context and format recognized by the manufacturing systems. Additionally, the business systems may not provide all the information necessary for the manufacturing systems to carry out designated functions.
A third area that has benefited from computer automation is the laboratory environment. Computers are typically employed in a laboratory environment to manage data regarding samples of product undergoing quality testing. In addition, computers may be used to automate the testing and/or sampling processes. Such computer systems are commercially available and are generally known as Laboratory Information Management Systems (LIMS). One commercially-available LIMS system is FISONS LIMS from FISONS Instruments, Inc., 32 Commerce Center, Cherry Hill Dr., Danvers, Mass. 01923. Other commercially-available LIMS systems are SQL*LIMS from Perkin-Elmer and EASYLIMS from Beckman.
A modern manufacturing plant typically comprises a computerized business system, a computerized manufacturing system, and a LIMS. The inventor is not aware of a generic computerized solution that offers an efficient, automated way to integrate these three systems.
According to conventional wisdom, integrating computerized business systems, computerized manufacturing systems, and laboratory information management systems often requires a human interface. Consequently, a high degree of automation of plant operations is not accomplished, and neither is full automation of inventory, quality, and LIMS operations. In this solution, work orders are generated by the business systems indicating parameters such as: the product to be manufactured, the required date, the raw materials needed, and the like. Human operators receive the work order along with these parameters and manually prepare work order instructions that enable the computerized manufacturing systems to manufacture the product specified by the work order, and laboratory instructions that enable the LIMS to conduct sampling and sample testing. Human operators are also responsible for collecting data from the computerized manufacturing systems and the laboratory information management systems, matching corresponding data, and providing the matched data to the computerized business systems.
Another conventional solution is to implement a custom, computerized interface between the business systems, manufacturing systems, and laboratory systems. However, these custom solutions are usually tailored to a specific situation. As a result, the tailored solution is not portable into other situations without major modifications. Additionally, these solutions are costly to maintain over time because of inherent difficulties in accommodating change.
In many manufacturing plants, multiple real-time process control systems are implemented to control manufacturing. One problem with having multiple real-time process control systems is that all interfaces to those computers are not necessarily uniform. In such a situation, a process information system (also referred to as a process control supervisory computer) may be provided to serve as a consistent interface to multiple, real-time process control systems having different interface characteristics. The process information system allows operators to provide data to specific real-time process control systems and retrieve data about the manufacturing process from those real-time process control systems.
In typical manufacturing plants, there are diverse manufacturing situations calling for different solutions. These situations include characterizing manufacturing output as relating to either a period of time during which manufacturing occurs or a quantity of material is manufactured. In other words, output can be characterized with either time-based units or physical quantity units.
For the purpose of this document, these characterizations are described in terms of two types of manufacturing paradigms: lot manufacturing and continuous manufacturing. The lot manufacturing paradigm depicts manufacturing as producing a finite quantity of products in physical-quantity units such as lots. The lots manufactured may not be consistent from one manufacturing run to the next. The continuous manufacturing paradigm, on the other hand, depicts manufacturing as producing a theoretically consistent product over time in an ongoing manner. Both paradigms can be used to characterize the manufacturing output of a given plant in order to fulfill different business needs. A continuous plant can be defined as a theoretical implementation of the continuous paradigm. A lot plant can be defined as a theoretical implementation of the lot paradigm.
Continuous plants generally manufacture a fixed set of
Alvarez Raquel
Schultz Dale H.
Stamber Eric W.
The Dow Chemical Company
LandOfFree
System and method for integrating business and manufacturing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for integrating business and manufacturing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for integrating business and manufacturing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2971722