Optics: eye examining – vision testing and correcting – Spectacles and eyeglasses – Ophthalmic lenses or blanks
Reexamination Certificate
2000-02-29
2003-04-29
Schwartz, Jordan M. (Department: 2873)
Optics: eye examining, vision testing and correcting
Spectacles and eyeglasses
Ophthalmic lenses or blanks
C623S006310
Reexamination Certificate
active
06554424
ABSTRACT:
FIELD OF THE INVENTION
The invention generally relates to ophthalmic lenses and, more particularly, the invention relates to ophthalmic lenses for increasing the depth of focus of the human eye.
BACKGROUND OF THE INVENTION
It is well-known that the depth of focus of the human eye can be increased with the use of ophthalmic lenses with pinhole-like apertures substantially near the optical center of the lens. For example, U.S. Pat. No. 4,976,732 (“the '732 patent”) discloses an ophthalmic lens with a pinhole-like aperture. In the '732 patent, a mask forms the pinhole-like aperture. In one embodiment, the mask is circular in shape. When the pupil is constricted, light enters the retina through the pinhole-like aperture. When the pupil is dilated, light enters the retina through the pinhole-like aperture and the outer edges of the mask.
In addition, U.S. Pat. No. 3,794,414 (“the '414 patent”) discloses a contact lens with a pinhole-like aperture. In the '414 patent, the mask forming the pinhole-like aperture has radial slits and/or scalloped edges. In addition, the mask forming the pinhole-like aperture is two spaced-apart concentric circles. However, the radial slits, scalloped edges and two spaced-apart concentric circles promote light diffraction, which in turn reduces the contrast of the image.
In U.S. Pat. Nos. 4,955,904, 5,245,367, 5,757,458 and 5,786,883, various modifications to an ophthalmic lens with a pinhole-like aperture are disclosed For example, the patents disclose use of an optical power for vision correction in the pinhole-like aperture, or use of an optical power for vision correction in the area outside the mask. In contrast, in U.S. Pat. No. 5,980,040, the mask is powered. In particular, the mask is powered to bend the light passing through the mask to impinge on the retina at a radial distance outside of the fovea. In other words, the mask is powered to “defocus” the light.
In each of these patents, the mask forming the pinhole-like aperture is made, in whole or in part, of a light absorptive material. A light-absorptive material is a material in which light is lost as it passes through the material, generally due to conversion of the light into another form of energy, e.g., heat.
SUMMARY OF THE INVENTION
In accordance with an embodiment of the invention, an ophthalmic lens comprises a lens body, an optic located in the lens body, the optic configured to produce light interference, and a pinhole-like optical aperture substantially in the center of the optic. In a further embodiment of the invention, the optic is configured to positively interfere with parallel light reaching the optic and negatively interfere with diverging light reaching the optic. In addition, some diverging light may pass through the optic. In this alternate embodiment of the invention, the optic is configured to spread out the diverging light passing through the optic.
In an alternate embodiment of the invention, an ophthalmic lens comprises a lens body, an optic located in the lens body, the optic configured to produce light scattering, and a pinhole-like optical aperture substantially in the center of the optic. In a further embodiment of the invention, the optic is configured to forward scatter parallel light reaching the optic and back scatter diverging light reaching the optic.
In another alternative embodiment of the invention, an ophthalmic lens comprises a lens body, an optic located in the lens body, the optic configured to produce light reflection, and a pinhole-like optical aperture substantially in the center of the optic. In an alternate embodiment of the invention, the optic is composed, in whole or in part, of a light reflective material.
In further embodiments of the inventions, the optic may be configured as a series of concentric circles, a weave, a pattern of particles, or a pattern of curvatures. In addition, the pinhole-like aperture includes an optical power for vision correction, and may have a diameter in the range of substantially 0.05 mm to substantially 5.0 mm. Further, the optic may have an outer diameter in the range of substantially 1.0 mm to substantially 8.0 mm. The optic may also be composed of a material having varying degrees of opacity, and the ophthalmic lens and the optic may be composed of a bio-compatible, non-dissolving material, such as polymethyl methacrylate or a medical polymer.
In accordance with another embodiment of the invention, a method for screening a patient for an ophthalmic lens, the ophthalmic lens having a pinhole-like optical aperture, comprises fitting each of the patient's eyes with a first contact lens, placing a mask on each of the first contact lens, the mask configured to produce a pinhole-like aperture in each of the first contact lens, fitting each of the patient's eyes with a second contact lens, the second contact lens being placed over the mask to hold the mask in a substantially constant position, and testing the patient's vision.
In further embodiments of the invention, the mask may be a light interference mask, a light scattering mask, or a light reflective mask. The first contact lens may include an optical power for vision correction. In addition, each of the first and second contact lenses may be soft contact lenses. Further, the mask for each of the patient's eyes may have a light absorption of substantially 100%. In the alternative, the mask for each of the patient's eyes may be composed of a polarized material.
In still further embodiments of the invention, the process of testing comprises testing the patient's acuity for distance vision under bright and dim lighting conditions, testing the patient's acuity for near vision under bright and dim lighting conditions, and testing the patient's contrast sensitivity under bright and dim lighting conditions. The process of testing may further comprise testing a patient's visual acuity using a night driving simulation. The night driving simulation may include a series of objects and road signs under bright and dim lighting conditions, as well as having the patient face a simulated oncoming automobile headlight.
In an alternate embodiment of the invention, the process of testing comprises replacing the mask in one of the patient's eyes with a mask having a light absorption of substantially 85% or less, then, if needed, replacing the mask in the patient's other eye with a mask having a light absorption of substantially 85% or less. Further, the process of testing comprises, if needed, removing the mask from one of the patient's eyes.
In another alternate embodiment of the invention, the process of testing comprises placing an analyzer in the spectacle plane of one of the patient's eyes, the analyzer including a polarizing element, rotating the polarizing-element to achieve an optimal balance of contrast and brightness, and determining the resultant light absorption of the mask. In addition, the process of testing may include evaluating the cosmetic appearance of the mask.
In accordance with a still another embodiment of the invention, a method for implanting a mask in a cornea, the mask configured to increase the depth of focus of the human eye, comprises removing the epithelial sheet, creating a depression in the Bowman's membrane, the depression being of sufficient depth and width to expose the top layer of the stroma and accommodate the mask, placing the mask in the depression, and placing the removed epithelial sheet over the mask. In a further embodiment of the invention, the depression may extend into the top layer of the stroma.
In an alternate embodiment of the invention, a method for implanting a mask in a cornea, the mask configured to increase the depth of focus of the human eye, comprises hinging open a portion of the Bowman's membrane, creating a depression in the top layer of the stroma, the depression being of sufficient depth and width to accommodate the mask, placing the mask in the depression, and placing the hinged Bowman's membrane over the mask.
In ano
Blanco Ernesto
Miller David
Boston Innovative Optices, Inc.
Bromberg & Sunstein LLP
Schwartz Jordan M.
LandOfFree
System and method for increasing the depth of focus of the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for increasing the depth of focus of the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for increasing the depth of focus of the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3045008