Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment
Reexamination Certificate
2001-02-28
2002-09-03
Cuchlinski, Jr., William A. (Department: 3661)
Data processing: vehicles, navigation, and relative location
Navigation
Employing position determining equipment
C701S211000, C340S995190
Reexamination Certificate
active
06446004
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of location dependent data processing, and particularly to a software system and associated method for use with a Personal Digital Assistant (PDA) combined with a Global Positioning System (GPS) locator, and an integrated software suite suited to permit the implementation of proximity and/or location driven activities.
BACKGROUND OF THE INVENTION
Internet based services and derived e-commerce applications are gaining increasing popularity, leading to the integration of diverse computing and communications devices, such as mobile phones, PDAs, and GPS systems. Such integration has expanded the need for a new generation of “smart devices”, independent electronic, web-oriented, software and technological systems and services. One specific need is for a system that uses proximity and/or locations as a means of facilitating the communication between a user and a computer system, such as a server.
The following publications represent attempts to integrate location positioning for various applications, and illustrate background material to help explain the context of the problem addressed by the present invention:
U.S. Pat. No. 5,444,444 to Ross et al.;
U.S. Pat. No. 5,790,974 to Tognazzini et al.;
U.S. Pat. No. 5,470,233 to Fruchterman et al.; and
U.S. Pat. No. 5,938,721 to Dussell et al.
The following example illustrates the type of problem addressed by this invention. A user would like to watch a specific movie. The date or dates he/she would like to watch this movie might be already known, chosen or specified, for example, a Saturday evening. It is not clear to this user, what is the best time or location to watch the movie. The user may choose to make reservations for the tickets.
However, the ticket may not allow flexibility with respect to the time the movie starts or the location of the movie theater. It would thus be desirable to have the user's communication device, such as a PDA, be capable of automatically purchasing the ticket from a non-specific nearby movie theater, at the moment when the user comes into sufficiently close proximity, but not earlier.
SUMMARY OF THE INVENTION
The present invention presents a system and an associated method that allow particular requests to be executed at some point in the future without specifying the exact time or necessarily a precise location. The execution time of the request is linked to the arrival of a person or object at, or near a geographic location or destination. When a person or object arrives at that location, or comes close to it, the request to interact will be executed. Moreover, a request for a binary software program results in improved functionality being added to a user's wireless PDA communication device. It enables this device to perform tasks, or display data, which it could not otherwise perform. The proximity threshold can be adjustable or programmable.
For example, the trigger could be executed when the person arrives at a movie theater or museum within a given distance range. First, an event is triggered from the client side of the invention (the person's wireless PDA communication device). A request is sent to the other interacting system (e.g. movie theater server). Depending on the request, this system will generate a transaction, or send back executable software code, or other digital content, which can be further processed on the client side.
Another feature of the present system is its ability to interact closely with a user's active calendaring system, which allows access to the user's personal profiles. This enables the system to perform predictions of a user's activities or locations, and to determine the type of event to trigger. For instance, if a meeting is scheduled for one hour prior to the start time of the desired movie, and based on the history of the meeting underway, it would be clear to that system that the current meeting will not be completed before the movie start time. As a result, the system might provide the user with some recommendations as to which movie theater will be the most convenient, based on the current user's physical location. However, the trigger criteria will still be the proximity to the desired location. Therefore, integrating the user's profiles will help make the present system smarter to adapt to a user's personal situation.
The following two examples will help clarify the features of the present system. In a first example, the user wishes to watch a specific movie, but may have other contingencies prior to the time the movie begins. For example, the user might have business meetings, or other engagements. The same movie might be showing at several movie theaters in the locality at several different start times. In this example, each movie theater represents an independent system that permits users to buy tickets for a specific performance. Once the user is ready to head to the movie theater, he or she drives towards non specific movie theaters in the vicinity close to user's present location.
In one embodiment, the user is provided with a communication device, such as a wireless personal digital assistant (PDA), that is equipped with a web-based calendaring system. The PDA calendaring system is aware of the user's desire to watch a specific movie, so that the user's physical proximity to a non-specific movie theater could trigger the purchase of the tickets after confirmation by the user.
In this example, the destination location is a “movie theater” and no exact physical location is specified except a distance threshold limit within which to activate the ticket purchase, at the moment when the user comes into sufficiently close proximity to a qualifying movie theater, but not earlier. When this event happens, the user will simply pick up the tickets (perhaps electronic “tickets” transmitted to the wireless PDA) that have been already purchased. One advantage of the present system is that it avoids the need for a user to stand in a ticket line.
The second example represents a more complex illustration of the use of the present invention. A user arrives at a museum and is equipped with a wireless PDA communication device, and he or she wishes that upon arrival, the local museum company web-based server wirelessly transmit an interactive tour guide (in digital form) to the user's communication device, or at least the museum's server request that a download be made available for purchase or rent. This would help the user to obtain navigational help to locate various points of interest.
The difference in the foregoing two-examples is that the first example represents a simple purchasing transaction, which was triggered automatically upon the user's proximity to a preprogrammed location, whereas in the second example, the unexpected or non-specific proximity event triggers the downloading of executable software and data to the user's communication device. However, in both examples, the triggering of the event to purchase, or the event to download is based upon the user's proximity to a desired destination.
The foregoing and other features of the present invention are realized by a system that includes a user mobile computing device, an active calendar module, and an event proximity server. The user mobile computing device may be, for example, a personal computer such as a laptop, or a personal digital assistant (PDA), and preferably has a wireless means of communication with the other components of the system.
The active calendar module tracks the user's present and future plans and activities, and can be part of the user mobile computing device or, alternatively, it could be a separate component. The event proximity server can be operated and maintained by various clients or by independent services with access to the destination sites.
REFERENCES:
patent: 5444444 (1995-08-01), Ross
patent: 5470233 (1995-11-01), Fruchterman et al.
patent: 5570100 (1996-10-01), Grube et al.
patent: 5699244 (1997-12-01), Clark et a
Cao Kevin Trung
Ford Daniel Alexander
Kraft Reiner
Cuchlinski Jr. William A.
International Business Machines - Corporation
Kassatly Samuel A.
Marc-Coleman Marthe Y.
LandOfFree
System and method for implementing proximity or location... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for implementing proximity or location..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for implementing proximity or location... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2896106