System and method for hosted facilities management

Data processing: measuring – calibrating – or testing – Measurement system – Remote supervisory monitoring

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S183000, C702S187000, C702S189000

Reexamination Certificate

active

06721689

ABSTRACT:

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
No Government License Rights.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a hosted facilities management system and method providing for the simultaneous monitoring of a plurality of conditions, systems, and components in a plurality of facilities based upon collecting, archiving, filtering, retrieving, and reporting conditional state data from the monitored facilities.
2. Description of the Related Art
The automation of business operations has greatly increased the technical complexities and the vulnerabilities of buildings and facilities. Automation is due in part to a competitive business environment demanding twenty-four hours per day, seven days per week fault-free operations. Many business operations depend on computers and communication systems requiring a controlled, reliable power supply, as well as a precisely maintained environment. Computerized manufacturing operations impose further challenges in terms of the constant monitoring of equipment and environment for operational failures and anomalous conditions. Such modern facilities and equipment are highly susceptible to fire and smoke damage thereby requiring real-time surveillance and rapid-response suppression systems. Reliance on expensive business equipment also increases the likelihood of intrusion and theft thereby requiring security surveillance.
Unfortunately, business automation coincides with the advent of the hostile building environment. Current building philosophies embrace a closed model thereby requiring electromechanical systems to provide an artificial environment within which personnel and equipment operate. For example, windowless or fixed window buildings not only require air conditioning to control the accumulation of heat but also a monitoring system to assess air quality and a circulation system to remove carbon dioxide, particulates, and hazardous gases generated by personnel and equipment. Each system requires a fault-free power supply and constant monitoring to identify mechanical failures.
Traditional facility management systems consist of a dedicated PC or server executing dedicated software. Monitoring is typically limited to one facility condition, for example the environment, one specific system residing within the facility, for example a computer network, or a specific system and one or two conditions specifically relevant to that system. Traditional management systems are generally located within the monitored facility and are based on a centralized monitoring unit attached to one or more sensors. Under the traditional model, the burden of data analysis and alert notification is borne by specialized and dedicated operations personnel located within the facility. It is readily obvious that such equipment, software, installation, and operation require continuous investment by the facility owner over the lifetime of the management system. It is also readily obvious that traditional approaches do not provide a comprehensive management capability for the real-time, total monitoring of multiple facilities.
Four examples of the traditional model are found in the related arts. Each is described below.
U.S. Pat. No. 4,212,078 issued on Jul. 8, 1980 to John E. Games et al. describes a facility management system (FMS) with a centralized processing unit interconnected to a plurality of remote controllers. The FMS monitors and controls the environmental conditions within several buildings from a central control building all located at one facility. Like many traditional management systems, Games monitors and controls a single condition, namely environment, within a single facility wherein the management equipment resides.
U.S. Pat. No. 4,644,478 issued on Feb. 17, 1987 to Lawrence K. Stevens et al. describes a general-purpose, centralized monitoring and alarm system enabling a user to define alarm variables and limits via a text-based system. Like other traditional management systems, Stevens facilitates the monitoring of a single system, for example environmental control equipment, within a single facility wherein the management system resides.
U.S. Pat. No. 5,955,946 issued on Sep. 21, 1999 to Ali Beheshti et. al. describes an alarm/facility management unit specifically relating to an end-to-end network manager for the real time monitoring of network elements and environmental conditions affecting such elements. Beheshti monitors the health of a communications facility by monitoring the condition of specific components within the network. Therefore like traditional management systems, Beheshti facilitates the monitoring of a single system, in this case a network, and achieves this by locating the monitor, a rack mounted unit, within the system.
U.S. Pat. No. 5,892,690, issued on Apr. 6, 1999 to Boatman et. al. describes an environmental monitoring system for collecting and recording environmental data pertaining to either air or water quality at various sites. Like traditional management systems, Boatman facilitates the monitoring of a single facility condition thereby lacking the means to collect, filter, archive, retrieve, and report conditional state data from a plurality of systems, sensors, and equipment within a plurality of facilities.
The related arts clearly demonstrate the limits of existing management systems. Presently, building and facility managers require a management tool that provides for the complete, efficient monitoring of complex interrelated facility systems, building systems, and equipment therein. Specifically, what is required is a single tool that conveniently enables personnel to evaluate top level conditions (i.e., utilities, environment, security, hazards, and equipment), to identify the location of any and all problems (i.e., area, sector, building, floor, or room), to identify any and all activated sensors and malfunctioning component (i.e., pumps, generators, communication equipments, air conditioning units, ventilation units, fire detection devices, smoke detection devices, intrusion detection devices, UPS (uninterrupted power supply), CRAC (computer room air conditioner), or PDU (power distribution unit)), and to determine which specific conditional level parameters are violated (i.e., current, voltage, load, and frequency).
The management tool should minimize on-site equipment, activities, and personnel at the client facility. The monitoring tool should collect, filter, and archive state data and provide a convenient graphical interface for the retrieval and reporting of all data. The management tool should be sufficiently robust to collect and archive the large volume of data associated with the monitoring of a plurality of diverse facilities. The management tool should provide instant notification to the client facility when a system, a component, or an operational level failure occurs or anomalous condition arises. The management tool should provide a historical archive to predict the onset of future failures and conditions. The management tool should be based on software residing at the host facility and accessible to the client. Finally, the management tool should provide user access through one or more communications means (i.e., telephone, fax, Internet, wireless telecommunications, and wireless data transmission). None of the above mentioned inventions is seen to describe the instant invention as claimed.
SUMMARY OF THE INVENTION
The present invention provides a centralized, hosted monitoring solution for the total management of a plurality of facilities. Such facilities might consist of one or more buildings or structures. The instant invention is sufficiently flexible to provide a customized monitoring solution for each and every monitored facility. The preferred monitoring solution requires no dedicated server or software at the client facility. Communications is provided through existing end-point connections to the client's network, which are normally underutilized, and links to the Internet for data collection and reporting purposes. The use of existing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for hosted facilities management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for hosted facilities management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for hosted facilities management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3239139

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.