Telephonic communications – Emergency or alarm communications – Central office responsive to emergency call or alarm
Reexamination Certificate
2000-03-03
2002-05-07
Matar, Ahmad F. (Department: 2642)
Telephonic communications
Emergency or alarm communications
Central office responsive to emergency call or alarm
C379S142100, C379S216010, C379S355010
Reexamination Certificate
active
06385302
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is directed to telecommunication systems, and especially to telecommunication systems having geographic sensitivity for automatic call connection with receiving stations. The present invention is especially well configured for telecommunication systems dealing with special number telecommunication systems, such as abbreviated number emergency services notification and dispatch operation telecommunication systems. Such emergency services notification and dispatch systems are commonly known as 9-1-1 systems in the United States.
The present invention includes a system and method for enabling any abbreviated number (or other special number) geographically based routing in a manner that is cost effectively applicable to hybrid private/public telecommunication networks such as are found in today's market. Thus, the present invention is advantageous for use by a public telephone service provider (such as an incumbent local exchange company—ILEC), a competitive local exchange carrier (CLEC), an Internet service provider (ISP), a wireless service provider (WSP), a large enterprise customer using a private exchange such as a private branch exchange (PBX), a wireless traffic aggregator/reseller switching between various backbone providers, a satellite telephone service provider or any other telephone service provider that may have users, or customers, employing their service to access a special number service seeking assistance from a geographically proximate locus.
Telecommunication systems sensitive to geographic aspects have been proposed. In U.S. Pat. No. 4,757,267 to Riskin for “Telephone System for Connecting a Customer With a Supplier”, issued Jul. 12, 1988, a system is disclosed which contemplates using geographic information gleaned from a caller's telephone number for use with a V-H (vertical-horizontal) data base for ascertaining which site to connect with the caller to ensure geographic proximity between the dealer at the selected site and the caller. The Riskin system depended upon entry of the telephone number information using DTMF (Dual Tone Multi-Frequency) signaling. If a customer entered his phone number using a dial phone, Riskin provided for connecting the caller with a human operator so that the human operator could enter the telephone number information using a DTMF entry device. The V-H data base disclosed by Riskin for use with his system was a complex transformation of latitude and longitude which was used by long distance telephone companies to compute the distance between a caller and a called party in order to assess the charge for a long distance call. Riskin used the V-H coordinate system to refer a caller to a dealer that was determined to be geographically closest to the caller. Riskin also disclosed using the DTMF phone number information to connect a caller with a dealer on a territorial basis to effect “gift routing”. According to Riskin's disclosure, a dealer may be connected with a caller based upon the dealer's proximity to an intended gift recipient who was identified by DTMF phone number information relating to the intended recipient.
Riskin's invention provides only a coarse location based upon the caller's telephone number in the format: “NPA-NNX”. In that format, “NPA” refers to “Number Plan Area”, commonly known as Area Code. “NNX”, the next finer number indicator within an Area Code, refers to a Central Office of the phone service provider. As a result, Riskin's invention provides location only to the detail of an area served by a respective Central Office of a service provider. Such an area can often be a very large geographic expanse. Locating a dense population of service locations regarding proximity to a caller is problematic when the location indicator is coarsely defined, as is the case with Riskin's system.
Emergency services notification and dispatch operations, commonly known in the United States as 9-1-1 Service, has its genesis in a 1957 recommendation by the National Association of Fire Chiefs for a single number for reporting fires. In 1967, the President's Commission on Law Enforcement and Administration of Justice recommended that a single number should be established nationwide for reporting emergency situations. The use of different telephone numbers for different types of emergencies was considered to be contrary to the purpose of using a single, universal emergency notification number. Other federal agencies and several government officials supported and encouraged the recommendation. The President's Commission on Civil Disorders charged the Federal Communications Commission (FCC) with finding a solution. In November 1967, the FCC met with the American Telephone and Telegraph Company (AT&T) to establish a universal number that could be implemented quickly. In 1968, AT&T announced the establishment of the number 9-1-1 as the emergency notification number nationwide. The 9-1-1 code was chosen because it was considered to be brief, easily remembered, and could be dialed quickly. It was also a unique number that had never been employed as an office code, area code or service code, and it met long range numbering plans and switching configurations of the telecommunication industry. The 9-1-1 number met the requirements of all parties, in government and in private industry.
Congress supported the AT&T plan and passed legislation allowing use of only the numbers 9-1-1 when creating an emergency calling service. The 9-1-1 number was thus established as a nationwide standard emergency number. The first 9-1-1 call in the United States was completed by Senator Rankin Fite in Haleyville, Ala., using the Alabama Telephone Company. Nome, Alaska Implemented 9-1-1 service in February 1968.
In 1973, The White House Office of Telecommunication issued a policy statement recognizing the benefits of 9-1-1, encouraging the nationwide adoption of 9-1-1, and establishing a Federal Information Center to assist governmental units in planning and implementing 9-1-1 service.
A basic 9-1-1 System provides for programming with special 9-1-1 software a telephone company end office (also known as a “central office” or a “Class 5 office”) to route all 9-1-1 calls to a single destination. The single destination was termed a Public Safety Answering Point (PSAP). In such an arrangement, all telephones served by the central office would have their 9-1-1 calls completed to the PSAP. However, the areas served by respective telephone company central offices do not line up with the political jurisdictions that determine the boundaries for which PSAP may be responsible. That is, a municipal fire department or police department may geographically include an area outside the area served by the central office, a condition known as underlap. Likewise, the municipal fire or police department may encompass an area of responsibility that is less expansive than the area served by the central office, a situation known as overlap. Further, the original basic 9-1-1 systems did not provide any identification of the caller; the PSAP human operator had to obtain such information verbally over the line after the call was connected. The major shortcoming of the basic 9-1-1 systems was that they could not support interconnection to other telecommunication providers such as independent telephone service companies, alternate local exchange carriers (ALECs), or wireless carriers. The “basic” nature of the basic 9-1-1 system also indicates that the system does not have Automatic Location Identification (ALI) capability or Automatic Number Identification (ANI) capability with a call back capability.
Similar abbreviated number systems are in place for handling emergency service calls in countries other than the United States. The abbreviated number system established in Canada is the foreign system most similar to the system established in the United States. There are other abbreviated number calling systems in place in the United States and abroad for such purposes as handling municipa
Antonucci James T.
Barnier Brian Glen
Weksel David
Agdeppa Hector
Lucent Technologies - Inc.
Matar Ahmad F.
Mondul Donald D.
LandOfFree
System and method for handling special number calls using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for handling special number calls using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for handling special number calls using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2825493