System and method for handling orphaned cause and effect...

Electrical computers and digital processing systems: interprogra – Interprogram communication using message – Object oriented message

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C719S316000, C719S318000, C707S793000, C716S030000, C706S028000

Reexamination Certificate

active

06735772

ABSTRACT:

RELATED APPLICATIONS
This application is related to the following co-pending U.S. Patent Application filed on the same day as the present application and having the same inventor and assignee: “System and Method Associating Causal Events with Predicted Effects,” “System and Method Associating Effects with Predicted Causes,” “System and Method Correlating Causes and Effects,” “System and Method For User Created Cause and Effect Correlations,” “System and Method For Dynamic Generation and Clean-up of Event Correlation Circuit,” and “System and Method For Dynamic Modification of Monitoring Criteria” by MacPhail.
BACKGROUND
1. Field of the Invention
The present invention relates to information processing technology. More particularly, the present invention relates to a system and method for handling and cleaning up cause and effect objects that are orphaned from one another.
2. Description of the Related Art
One of the highest priorities of information technology (IT) organizations responsible with managing mission-critical computing environments is to ensure that problems, as well as conditions that could lead to problems, are handled in a timely and efficient manner. Event correlation managers are software systems that are designed to collect and respond to events that occur in the computer system. Events may come from a variety of sources. Examples include events that occur: (1) when a link to another computer system goes down, (2) when a router used for routing information goes down, (3) when a database is down, (4) when the system processor is maximized, or “pegged,” for an extended period, (5) when a disk is full, (6) when one or more applications that make up a critical business function (i.e., order entry) go down, (7) when a critical application program's performance degrades beyond an acceptable level, and (8) when a host computer is going down.
As used herein, a “business system” serves the needs of the organization's critical functions, such as order entry, marketing, accounts receivable, and the like. A business system may span several dissimilar types of computers and be distributed throughout many geographical locations. A business system, in turn, is typically based upon several application programs. An application program may also span several dissimilar types of computers and be distributed throughout a network of computer systems.
An application typically serves a particular function that is needed by the business system. An individual application program may, or may not, be critical to the business system depending upon the role the application program plays within the overall business system. Using networked computers, an application may span several computer systems. In an Internet commerce system, for example, an application program that is part of the company's order processing business system, may be responsible for serving web pages to users browsing the companies online catalog. This application may use several computer systems in various locations to better serve the customers and provide faster response to customer inquiries.
The application may use some computers running one type of operating system, for example a UNIX-based operating system such as IBM's AIX® operating system, while other computer systems may run another type of server operating system such as Microsoft's Windows NT® Server operating system. Individual computer systems work together to provide the processing power needed to run the business systems and application programs. These computer systems may be mainframes, mid-range systems, workstations, personal computers, or any other type of computer that includes at least one processor and can be programmed to provide processing power to the business systems and applications.
Computer systems, in turn, include individual resources that provide various functionality to the computer systems. For example, a modem is an individual resource that allows a computer system to link to another computer system through an communication network. A router is another individual resource that routes electronic messages between computer systems. Indeed, even an operating system is an individual resource to the computer system providing instructions to the computer system's one or more processors and facilitating communication between the various other individual resources that make up the computer system. Events, as described herein, may effect an entire business system, an application program, a computer system, or an individual resource depending upon the type of event that occurs.
The number and types of events that may occur vary widely from system to system based upon the system characteristics, load, and desired use of the system. An business system providing content from an Internet site may experience different events than a business system used to process a the company's payroll. However, many events between dissimilar systems overlap. For example, many computer systems experience problems when the disk space is full and many computer systems experience problems when the system's processor is pegged. The types of problems these events cause, however, will vary depending upon the types of work that the business system is expected to perform.
In the Internet site example, a pegged processor is likely to result in applications interfacing with Internet users to become stalled or unusable and transaction throughput to stall or become exceedingly slow. In the corporate payroll system, the same pegged processor may result in critical software applications that make up the payroll application stalling or becoming exceedingly slow. The causes of the pegged processor may also be different depending upon the usage of the computer. An Internet server's processor may become pegged due to receiving more requests from Internet users than can be handled. The corporate payroll system's processor may have become pegged due to multiple processor-intensive business applications running simultaneously on the system.
Traditional event correlation managers are usually designed as hierarchical rule-based systems. After an event monitor detects a certain event, the correlation manager processes the event using the rules that have been predefined in the system in order to determine the likely cause of the event. Software vendors providing event correlation managers often provide a rule editor that allows customers to edit the rules that apply to the customer's system.
Event correlation managers typically receive signals, or messages, from event monitors that monitor business systems, applications, computer systems, and individual resources (collectively, “business system and components”). These event monitors are often programmed to filter information from the business system and components being monitored. The filtering criteria is often preset so that certain conditions are filtered out as non-problems while other conditions are trapped and correspondingly sent to event correlation managers for processing the given event. Traditional event monitors are challenged by the fact that the filtering criteria is preset or coded into the event monitor itself making it difficult or impossible to dynamically alter the monitoring criteria used for a particular device or piece of software. Traditional event correlation managers, like their traditional event monitor counterparts, also face challenges in dealing with the complexities of today's modern business system and components.
One challenge with traditional event correlation managers is that the creation, modification, and maintenance of the rule base is a centralized activity resulting in a centralized set of rules. An area or individual within the IT organization may be responsible for updating the rules. However, with the complexity of modern business system and components, it is unlikely that one person or even one area will be the most knowledgeable about all of the event producing hardware and software in the business system and components nor will such perso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for handling orphaned cause and effect... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for handling orphaned cause and effect..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for handling orphaned cause and effect... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3267216

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.