System and method for fusing spinal vertebrae

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S102000, C606S105000

Reexamination Certificate

active

06648891

ABSTRACT:

TECHNICAL FIELD
This invention relates to appliances used in the stabilization and fusion of spinal vertebrae during and after spine surgery, and more specifically, relates to systems and methods for using a fusion plate for stabilizing vertebrae as part of a corpectomy or discectomy procedure to allow bone growth to occur.
BACKGROUND
Fusion plates have been in use as appliances for immobilizing and fusing adjacent spinal vertebrae following a discectomy (spinal disc removal) or for immobilizing the area surrounding a corpectomy (removal of an entire vertebral body). When these procedures are performed, a gap in the spine remains from the removed disc or vertebral body; this gap typically being closed by inserting a bone graft, usually from a cadaver. The adjacent vertebrae surrounding the discectomy or corpectomy site are then immobilized by attaching a fusion plate, usually on the anterior side of the spine, so that the vertebrae fuse to the bone graft, forming an entire fused section of the spine. Such fusing of vertebrae to the bone graft requires that the vertebrae remain immobile. Any movement during the healing process can cause a lack of fusion to occur, essentially forming a false joint in the spine at the discetomy or corpectomy site.
Presently, in performing a discectomy or corpectomy, a device called a “distractor” is used to spread the adjacent vertebrae so that the disc or vertebral body of interest can be removed. In use, a pair of distractor pins, which are essentially screws having a head for engaging with the distractor, are screwed into the vertebrae adjacent to the discectomy or corpectomy site. One pin is placed in the upper vertebra, and a second pin is placed in the lower vertebra, both vertebrae being directly adjacent to the discectomy or corpectomy site. The distractor tool is then coupled to the pins on the upper and lower vertebrae, above and below the site, and the vertebrae are then mechanically spread apart, for aiding in the removal of any remaining portion of the deteriorated disc or vertebral body, and also to create a gap for placing a bone graft. Once the bone graft is placed, the distractor is removed; next, the distractor pins are removed from the spine, and finally, a fusion plate is placed in a position for keeping the adjacent upper and lower vertebrae as well as the bone graft immobilized. The plate is screwed into the upper and lower vertebrae the goal of which is to provide sufficient immobility to cause fusion between the vertebrae and bone graft to occur. Examples of fusion plates presently existing in the art, which are used in the heretofore described manner, are those produced by EBI Biomet, Inc., Dupuy AcroMed, Inc., and Spinal Concepts, Inc, to name a few.
Two drawbacks with the present fusion plate methods and systems are: 1) the plate is often positioned off-center on the spine, during these procedures, due to the fact that there has not been a system in place to properly align the fusion plate on the spine; and 2) the above methods rely only on the natural compression of the spine (e.g. once the distractor is removed), to compress the vertebrae sufficiently against the bone graft, to allow fusion to begin. With regard to the first drawback, a fusion plate positioned off-center can result in aesthetic objections from a patient in whom a fusion plate has been implanted. This often occurs when a patient examines his spinal X-ray following surgery and the fusion plate is off-center, or crooked, leading the patient to surmise that the surgeon has performed a haphazard job. With regard to the second drawback, the failure to sufficiently compress the vertebra and bone graft together, prior to placing and anchoring the fusion plate, results in unnecessary space remaining between these components, and reduces the likelihood that fusion will occur (this can cause the “false jointing” problems noted above).
Therefore, a need exists for a fusion plate system and method which allows a section of spine to be compressed adequately following a corpectomy or discectomy, so that sufficient immobilization and spinal fusion can occur. Additionally, a need exists for a fusion plate system and method which allows a fusion plate to be centered properly upon a spine.
The foregoing reflects the state of the art of which the inventor is aware, and is tendered with a view toward discharging the inventors' acknowledged duty of candor, which may be pertinent to the patentability of the present invention. It is respectfully stipulated, however, that the foregoing discussion does not teach or render obvious, singly or when considered in combination, the inventor's claimed invention.
SUMMARY OF THE INVENTION
The invention overcomes the drawbacks of the prior art by providing a modified fusion plate system, and method for installing this system upon a patient's spine. This method and system allows a desired level of compression to be applied to the adjacent vertebrae surrounding the site of a corpectomy or discectomy, prior to, and during, the anchoring of the fusion plate. Furthermore, the inventive fusion plate system and method results in the fusion plate being properly centered upon a patient's spine, so that an aesthetically pleasing, as well as functional, surgical result is achieved.
The inventive system and method relies upon mechanically compressing the spine to draw vertebrae together until these vertebrae are in contact with a bone graft located in the gap left by a corpectomy or discectomy. Once the spine is compressed, the fusion plate is guided to a centered positioning upon the spine over the site of the corpectomy. Finally, the fusion plate is anchored upon the spine, while the spine is still undergoing mechanical compression. The reliance of this system and method upon mechanical compression of the spine while the fusion plate is anchored, is intended to reduce spaces between the bone graft and adjacent vertebrae at the site of a corpectomy or discectomy, as much as possible, so that spinal fusion has the greatest chance of occurring.
In the preferred embodiment, the inventive system uses a distractor device to not only distract (e.g. spread) vertebrae, in the manner presently used, but additionally, to mechanically compress vertebrae and any bone graft located there between. Furthermore, the addition of sizing graduations to the inventive distractor device, correlating to the sizes of different fusion plates, allows a properly sized fusion plate to be selected by the surgeon for a particular application, with minimal trial and error.
The inventive system and method uses distractor pins to properly guide the fusion plate to a centered positioning upon a patient's spine. Once guided onto the spine, the fusion plate is anchored with bone screws. The distractor pins are centered on the spine using anatomical landmarks such as the longis colli muscles or uncinate processes. The distractor pins are also designed for having a compressing force applied to them by the distractor device such that they do not bend or disengage from the distractor device upon compressing the spine to a desired level.
Accordingly, the following objects and advantages of the invention apply:
It is an object of this invention to provide a fusion plate system and method which results in improved fusion of spinal vertebrae following a corpectomy or discectomy.
It is another object of this invention to provide a fusion plate system and method which causes a fusion plate to be centered upon a patient's spine.
Further objects and advantages of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention, without placing limitations thereon.


REFERENCES:
patent: 2580821 (1952-01-01), Nicola
patent: 3866607 (1975-02-01), Forsythe et al.
patent: 4929247 (1990-05-01), Rayhack
patent: 5540696 (1996-07-01), Booth et al.
patent: 5776197 (1998-07-01), Rabbe et al.
patent: 5899901 (1999-05-01), Middleton
patent: 6017342 (2

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for fusing spinal vertebrae does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for fusing spinal vertebrae, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for fusing spinal vertebrae will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113671

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.