System and method for facilitating welding system diagnostics

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S182000, C707S793000, C228S103000, C219S110000, C307S064000

Reexamination Certificate

active

06795778

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to computer and welding systems. More particularly, the present invention relates to a system and method for facilitating welding system diagnostics.
BACKGROUND
Welding systems reside at the core of the modern industrial age. From massive automobile assembly operations to automated manufacturing environments, these systems facilitate joining in ever more complicated manufacturing operations. One such example of a welding system includes an electric arc welding system. This may involve movement of a consumable electrode, for example, toward a work piece while current is passed through the electrode and across an arc developed between the electrode and the work piece. The electrode may be a non-consumable or consumable type, wherein portions of the electrode may be melted and deposited on the work piece. Often, hundreds or perhaps thousands of welders are employed to drive multiple aspects of an assembly process, wherein sophisticated controllers enable individual welders to operate within relevant portions of the process. For example, some of these aspects relate to control of power and waveforms supplied to the electrode, movements or travel of a welding tip during welding, electrode travel to other welding points, gas control to protect a molten weld pool from oxidation at elevated temperatures and provide ionized plasma for an arc, and other aspects such as arc stability to control the quality of the weld. These systems are often deployed over great distances in larger manufacturing environments and many times are spread across multiple manufacturing centers. Given the nature and requirements of modern and more complex manufacturing operations however, welding systems designers, architects and suppliers face increasing challenges in regard to upgrading, maintaining, controlling, servicing and supplying various welding locations. Unfortunately, many conventional welding systems operate in individually controlled and somewhat isolated manufacturing locations in regard to the overall assembly process. Thus, controlling, maintaining, servicing and supplying multiple and isolated locations in large centers, and/or across the globe, has become more challenging, time consuming and expensive.
One such challenge relates to facilitating service support of welder(s) and/or welding system(s). Conventionally, service support of welder(s) has occurred via an awkward combination of technical manuals and/or bulletins from manufacturers and/or diagnosis of welder(s) by operator(s). As welder(s) become increasing complex they have likewise become increasing difficult to service and/or support leading to increase down time.
Further, welder fault(s) and/or alarm(s) have been difficult for operator(s) to monitor and/or initiate corrective action. Conventionally, operator(s) learn of fault(s) and/or alarm(s) when they are in physical proximity of the welder (e.g., by reviewing status indicator(s) and/or monitoring equipment). This can be time-consuming and can lead to inconsistent result based upon an operator's level of experience.
SUMMARY
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
The present invention relates to a system and method for facilitating welding diagnostics. The present invention provides for a welder to be operatively connected to a local system, a remote system and/or an alarm component. A sensor component of the welder can receive information regarding operation of the welder and/or weld characteristics through test equipment and/or monitoring equipment. A control component of the welder can execute test sequence(s) based, at least in part, upon information received from the sensor component to facilitate welding system diagnostics. Information from the sensor component and/or the control component can be received by a diagnostic component that can perform internal diagnostics. Based, at least in part, upon information received from the sensor component, control component and/or internal diagnostics, the diagnostics component can determine a health status of the welder and/or whether the welder has any functional and/or performance problems (e.g., alarm(s) and/or fault(s)). The welder can communicate the health status of the welder, welder data and/or whether the welder has functional and/or performance problems to the local system, the remote system and/or the alarm component (e.g., via voicemail, telephone, e-mail and/or beeper). Information regarding the health status of the welder, functional and/or performance problems can further be stored in an event log.
Accordingly to another aspect of the present invention, the remote system can have an expert component for facilitating welding diagnostics. The expert component can employ various artificial intelligence technique(s) (e.g., Bayesian model, probability tree network, fuzzy logic and/or neural network) to facilitate welding diagnostics based, at least in part, upon the welder data and/or health status received from the welder. The expert component can adaptively modify its modeling technique(s) based upon historical success (e.g., learn from success of previous welding diagnostics).
Yet another aspect of the present invention provides for the expert component to access an expert data store, a local service support data store, a remote expert data store and/or a remote service support data store to facilitate welding diagnostics. The expert data store and/or the remote expert data store can store information associated with welding diagnostics (e.g., current expert system rules, diagrams, welder troubleshooting procedure(s) and/or welder software upgrade(s)) that the expert component can utilize to facilitate welding diagnostics. The local service support data store and/or the remote service support data store can store information (e.g., welder service record, welder part order information, welder warranty information and/or welder service information) that the expert component can utilize to facilitate welding diagnostics.
According to an aspect of the present invention, the welder, local system and/or remote system can initiate corrective action, at least temporarily, based, at least in part, upon the health status of the welder. Further, the welder can communicate with the local system and/or the remote system (e.g., via voicemail, telephone, e-mail and/or beeper) to schedule maintenance (e.g., based upon usage of the welder).
The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the present invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.


REFERENCES:
patent: 4419560 (1983-12-01), Zurek
patent: 4721947 (1988-01-01), Brown
patent: 5302799 (1994-04-01), Kennedy et al.
patent: 5602462 (1997-02-01), Stich et al.
patent: 5772814 (1998-06-01), Grewell
patent: 5920856 (1999-07-01), Syeda-Mahmood
patent: 5923555 (1999-07-01), Bailey et al.
patent: 6041287 (2000-03-01), Dister et al.
patent: 6233570 (2001-05-01), Horvitz et al.
patent: 6236017 (2001-05-01), Smartt et al.
patent: 2002/0088786 (2002-07-01), Rouault
patent: 2002/0168937 (2002-11-01), Clark et al.
International Search Report dated Sep. 5, 2002 in PCT patent application No. PCT/US02/14388 filed May 8, 2002.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for facilitating welding system diagnostics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for facilitating welding system diagnostics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for facilitating welding system diagnostics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3209218

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.