System and method for facilitating component management in a...

Multiplex communications – Communication techniques for information carried in plural... – Adaptive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S316000, C370S329000

Reexamination Certificate

active

06426959

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to communication methods and apparatus for providing network management, bandwidth and path control in a heterogeneous network that may be composed of multiple vendor equipment and transmission paths. More specifically, the communication system concerns semi-autonomous implementation components within a management hierarchy to globally manage multiple vendor elements while satisfying local network demands.
BACKGROUND OF THE INVENTION
Telecommunications services have, for many years, attempted to optimize or minimize bandwidth usage between network elements. Since the modern communications era, brought about by the theories of Shannon, telecommunications engineers have been keenly aware of the need to provide optimal, or at least good solutions, to bandwidth allocation problems in point-to-point and point-to-multipoint networks.
In wireless communication systems, solutions to bandwidth allocation problems can be seen in the way data is modulated to “share” finite resources. For example, time division multiple access (“TDMA”) provides a means for multiple stations to access time slots on satellite carriers and thereby “share” bandwidth resources. Code Division Multiple Access (“CDMA”) provides a means to use code division modulation techniques (time and frequency modulation) for multiple point access to a predetermined range of bandwidth and thereby “share” bandwidth space. Likewise, frequency division multi-access (“FDMA”) provides a means to divide up and share a finite bandwidth resource.
More elaborate schemes to dedicate bandwidth in accordance with a predetermined transmission schedule and modulation plan can be seen in U.S. Pat. No. 5,592,470 to Rudrapatna et al., (“Rudrapatna”) issued Jan. 7, 1997, (the “Rudrapatna patent”). The Rudrapatna patent concerns a terrestrial micro-port network that allocates bandwidth to terrestrial micro-port receivers based on a pre-determined schedule and modulation plan. The pre-determined schedule and plan may be subsequently modified by dynamic demands on the micro-ports. The network can then satisfy the dynamic demands by moving channels between modulation and polarity schemes in pre-determined amounts.
In wireless networks, certain communications links require more bandwidth and power resources than others. This is necessary to maintain specified information throughput, to provide appropriate grades of service or due to varying site configurations (e.g., different antenna sizes). Whenever a change in network resource allocations is required to match varying traffic requirements, a new transmission plan may or may not be implemented. This may necessitate programming, transmitting and receiving communications equipment, e.g., amplifiers, modulators and demodulators, to support the new resource assignments. These and other problems in bandwidth allocation in a multi-vendor network are addressed by the present invention.
SUMMARY OF THE INVENTION
The methods and apparatus disclosed herein may assign and re-assign available transmission resources in point-to-point, multipoint and broadcast wireless networks. This may be accomplished on the basis of information capacity and connectivity requirements between transmitters and receivers of communications links at the time of assignment or reassignment. The system may also provide a network administrator with novel tools and automated methods to define and implement network transmission plans and to modify allocation decisions as traffic requirements change.
The system may provide the tools to efficiently allocate transmission resources. These tools help implement the communications links that form wireless networks. An optimum resource or a “good fit” allocation is achieved when network users have just enough information transmission capacity to perform their tasks. One way to accomplish optimal or good transmission resource allocations in a wireless network is to analyze network users' usage patterns and allocate capacity according to a time-varying schedule.
By analyzing network usage patterns, a management component can determine a transmission plan schedule that efficiently allocates the satellite bandwidth available to the network based on historical usage patterns. The management component may automatically schedule and implement a transmission plan. As the network users' requirements change, the management component may update or modify the scheduled transmission plans to satisfy the new requirements.
The system may automate implementation of transmission plans by reprogramming the system when predetermined parameters are reached. For example, the management component may determine a transmission plan from a historical analysis of bandwidth requirements between stations. This transmission plan may be automatically deployed to the network. The management component can then monitor and analyze network allocation demands to determine a new transmission plan. The new transmission plan can then be automatically deployed in the network when predetermined parameters are reached, such as, average change in bandwidth, e.g., bandwidth in use/bandwidth in the transmission plan, exceeds a predetermined amount or if a predetermined amount of time has transpired. The transmission plans may be propagated as generic network commands and translated into corresponding equipment parameters and associated control commands as required for reconfiguring network equipment elements. Thus, the system may generate and distribute equipment configurations to network elements to reprogram for synchronized execution at predetermined times.
The system further controls and schedules bandwidth between network elements to consider other network factors such as economic constraints. In a wireless communications network, each communications carrier should have just enough bandwidth and power necessary to meet the needs of its corresponding users. Although optimum resource allocation is the primary goal, sub-optimum allocation may be tolerated when economic constraints may limit transmission resources to finite amounts. Thus, for example, a dynamic bandwidth requirement at a network station may require an increase in bandwidth allocation from the station, such as when the queuing depth reaches a predetermined amount at the station switch. The station may have additional capacity available on an available communication link, however, the incremental capacity of the link may far exceed the bandwidth required to reduce the depth of the communication queue. Furthermore, the financial cost of the incremental capacity may exceed the cost of waiting for network usage to decrease to reduce the depth of the queue. The system, in this case, would allow the network to back up and flow control the user data before the system would allocate additional capacity. The system provides methods to use finite transmission resources by enabling power and bandwidth to be re-allocated as needed to meet changing communications requirements in satellite networks. However, the capabilities of the system are applicable to all wireless networks that can be modeled as a collection of transmitters, transmission resources, and receivers.
The system provides a means to manage heterogeneous or multiple vendor network equipment over heterogeneous or multiple vendor transmission resources with multiple transmission paths. One such path may be via programmable C-, Ku-, or Ka-band satellite networks. Other paths may be via discrete carriers available on a preprogrammed networks such as the Inmarsat, Globalstar or Iridium satellite systems. Yet other paths may be via third party medium or broadband networks such as the envisioned Teledesic satellite network. Yet another path may be over a programmable or managed network such as the Intelsat global satellite system. Thus, the system provides a means to define and manage capacity between network elements where the network may be a combination of a discrete bandwidth allocation network managed by an external system, a semi-programmable medium or broadband net

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for facilitating component management in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for facilitating component management in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for facilitating component management in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2916779

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.