System and method for enhancing a communication link

Telephonic communications – Diagnostic testing – malfunction indication – or electrical... – Of data transmission

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S201060, C379S207030, C379S208010

Reexamination Certificate

active

06269149

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to telecommunication networks, and more particularly to a system and method for providing a robust telecommunication network having enhanced security and integrity.
2. Discussion of the Related Art
Presently there is a need for enhanced security and integrity in a telecommunications network, while at the same time promoting and maintaining a flexible and robust communications network.
In recent years, there has been a proliferation in digital telecommunication systems, and frequently, high capacity users define the endpoints of a telecommunications network. Service providers, local area networks, and private branch exchanges (PBXs), are all examples of such high capacity users. Typically, the incoming/outgoing network link connected to such high capacity users includes a high capacity trunk line, such as a T
1
or DS line, which may interconnect with various other users, through, for example, a point-to-point connection or a frame relay network. As is known, such networks provide for high capacity throughput.
There are, however, various shortcomings in the present state of the art, including the handling of fault detection, security, and call prioritization. Mechanisms are well known for identifying and notifying a user of a line breakage or other fault condition existing in the link between endpoints. However, endpoint equipment often responds by rerouting all data on a particular line, as opposed to on the affected data. For example, suppose one endpoint of a telecommunications network interfaces to a local area network (e.g. a corporate network) and the telecommunications link communicating with the endpoint is a high capacity T
1
line. If the endpoint detects a fault or breakage in any channel(s) of the T
1
line, present systems operate to reroute the entirety of the data traffic across that T
1
line through another port, whether that be a secondary T
1
line or an alternative backup link. However, fractional or partial line faults are often encountered, making such a global rerouting of data wasteful and unnecessary. For example, data transmitted across a frame relay network (e.g., packet-switched data) often suffers only a partial fault, or a network breakage at some intermediate point across which only a portion of the data to the ultimate endpoint traverses.
Another shortcoming noted in present state of the art systems relates to security. In keeping with the previous example of telecommunications network endpoint being connected to a local area network, there is a tremendous need for providing a secured entry from any caller outside the local area network to access the network by way of, for example, a dial-up connection. Frequently security issues, such as this one, are handled by password protection. In such systems, dial-up users are required to provide a password for access to the network. The inherent problem with this type of security implementation is that passwords become discovered by outsiders, who then misuse the password to disrupt or corrupt the system (ie., the local area network).
Yet a further shortcoming of the present systems relates to the prioritization of calls, particularly in a bandwidth limited system. For example, in a plain old telephone system (POTS) or a basic rate interface integrated services digital network (ISDN-BRI). Access to the network is defined by a relatively narrow bandwidth, insofar as a large number of users might be concerned. In applications or systems such as these, it is important to provide a mechanism that allows incoming calls of higher priority to be accepted. Of course, this requires terminating an existing call, but more importantly requires the ability to detect the priority of an incoming call in relation to an existing call, which is presently a need that is largely unaddressed by presently known systems.
There is, therefore, a need in the industry for a method and apparatus for addressing these and other related problems.
SUMMARY OF THE INVENTION
Certain objects, advantages and novel features of the invention will be set forth in part in the description that follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned with the practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
To achieve the advantages and novel features, the present invention is generally directed to a method for establishing a backup communications link for rerouting data in a telecommunication network. In accordance with one aspect of the invention the method includes the steps of establishing a primary communications link between a calling party and a called party, and examining call setup information at the called party location to identify the telephone number of the calling party. Thereafter, the method stores the telephone number of the calling party. Upon identification of a fault condition in the communication link between the calling party and the called party, the method retrieves the stored telephone number of the calling party by the called party. Using the retrieved telephone number to dial the calling party back, the method then establishes a backup communications link. Alternatively, the method could use the identified telephone number of the calling party to identify a backup number (different that that called from) to call back when establishing the backup link.
In accordance with the invention, the primary communications link may be a T
1
link, an ISDN link, DDS, DSL, or a POTS link. The link may be a point-to-point link, a permanent virtual circuit, a packet-switched frame relay circuit, or other similar link. Preferably, the system utilizes a lookup table or other database to store party profile information, which may include security information or call priority data. The caller identification number of the calling party is used to access/index such a table or database.
In accordance with another aspect of the present invention, a method for establishing a secured telecommunications link between a calling party and a called party is provided. In accordance with this aspect of the invention, the method includes the steps of receiving a calling from a remote user, identifying the caller identification number, and using caller identification number to access a lookup table. The method further includes the steps of determining whether a profile exists in the lookup table that corresponds to the identified caller identification element. If so, the method further confirms from information provided in the lookup table, whether that user is entitled to access the system. If so, then the method directs the system to establish the connection with the remote user. In a preferred embodiment, the system may provide an added level of security by requiring the remote user to enter a password, as well.
Preferably, this aspect of the invention includes the steps of receiving a signal from a calling party that is requesting the establishment of a communication link, and examining call setup information within the received signal for the second calling party to identify the telephone number of the second calling party. The method further includes the steps of accessing a memory storage area using the telephone number of the second calling party to retrieve information relating to the calling party, and evaluating security data of the retrieved information. If the security data permits the establishment of a connection, then the method establishes a communication link with the calling party.
In accordance with yet another aspect of the present invention, a method is provided for prioritizing the establishment of telecommunication links. In accordance with this inventive aspect, the method includes the steps of establishing a first communication link with a first calling party and receiving a signal from a second calling party that is request

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for enhancing a communication link does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for enhancing a communication link, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for enhancing a communication link will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.