Data processing: generic control systems or specific application – Specific application – apparatus or process – Electrical power generation or distribution system
Reexamination Certificate
2000-07-13
2004-08-31
Picard, Leo (Department: 2125)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Electrical power generation or distribution system
C705S412000
Reexamination Certificate
active
06785592
ABSTRACT:
BACKGROUND OF THE PRESENT INVENTION
1. Field of the Invention
The present invention is directed to the optimization of energy procurement, energy demand (consumption) and energy supply, particularly in view of anticipated upcoming regulation changes to the energy business.
2. Background of the Invention
With the advance of the Industrial Age, the procurement of energy has become an increasingly daunting problem as Society migrates from one form of energy-producing resource to others, e.g., coal to oil to electricity. Although the specific technological mechanisms employed to harvest these discrete resources and convert them into usable energy is not the subject of this application for patent, it is nonetheless well understood to one skilled in the art as well as the layman that economic considerations drive the energy business. Over the course of the 20th century and as Society enters the 21
st
century, electricity has become available to virtually all Americans and most of the developed countries of the world. Other resources, such as coal and oil, are increasingly used to produce electricity. Various facilities, such as hydroelectric dams and nuclear reactors, have been built to create additional sources for electrical energy.
Over time, governments have stepped in to regulate the energy industry, creating a complicated mosaic of rules and regulations regarding the gathering and consumption of the various distinct resources. Although necessary for standardization and environmental concerns, this government intervention spawned a bureaucratic infrastructure of immense complexity subject to political intrigue. Separate rules and regulations were developed to govern the customer side, i.e., from the power company to the consumer, and the production/transport side, i.e., from the natural resource to the power company.
The existing bureaucracies of rules and regulations for the discrete sides and respective energies are now under attack as new technologies permit heretofore unheard of interchanges between available energy sources, changing the economics dramatically. In particular, technologies allowing the real-time assessment of energy needs and selection between various energy sources based upon cost have begun to break down the bureaucratic walls designed to control the industries. With the creation of the Internet and increasing shift to e-commerce using the World Wide Web interconnections, there is at present a movement toward deregulation, allowing mergers of the separate industries or at least permitting the energy producers and sellers to operate more freely.
Winds of change are now sweeping through the energy industry, particularly in the electricity and gas markets. End consumers of energy are gaining the right to choose who will supply their energy commodity needs, something unthinkable just a few years ago. Deregulation, reregulation, liberalization, competition and the introduction of retail markets are but cause and effect events arising from this decisive change in attitudes and shift in rules.
With the advance of the Information Age, the Internet and e-commerce, the nature and value of information has changed, opening up numerous opportunities in information management. In the energy management area, the interconnections provided by a communications system offer possibilities for increasing energy efficiency through continuous or real-time monitoring.
There is, therefore, a clear need for improvements in the management of energy resources within a facility or in a complex of facilities, thereby lowering the costs for energy consumption.
It is, accordingly, an object of the present invention to provide an improved methodology for the gathering of information pertaining to the energy usage of a facility or facility complex, such as in establishing a baseline level of energy consumption.
It is also an object of the present invention to monitor the energy consumption performance of a facility relative to the ascertained baseline level and adapt to changes in energy availability to achieve an economic savings in energy consumption.
It is another object of the present invention that the methodology procure further economic savings by projecting energy availability and modify consumption accordingly.
It is also an object of the present invention to identify abnormalities within the pattern of energy consumption., further benchmarking the baseline level.
It is an additional object of the present invention that the methodology simulate energy consumption using the baseline level and operational data to determine proposed optimal operation conditions subject to user-specified comfort criteria.
It is further object of the present invention that a database of energy data be used to facilitate the measurement of energy consumption and actual savings, provide a mechanism for the verification of same, and/or provide a reporting procedure.
It is a still further object of the present invention that the aforementioned methodology, after initially optimizing the physical facility, include negotiation of energy procurement agreements with service providers, thereby securing additional energy economic savings.
It is yet another object of the present invention that the methodology, through dynamic real-time optimization and promote predictive maintenance, optimize equipment usage, reduce equipment and reduce staff.
SUMMARY OF THE INVENTION
The present invention is directed to a business methodology applicable to a variety of industrial, commercial and residential applications. The approach is focused toward the needs of the ultimate consumer such as through a direct relationship or indirect relationship via a retail energy provider or energy services company: (1) reduced overall costs, (2) providing enhanced services throughout the totality of the value chain, and (3) providing customization for different usages and industries (hotel vs. hospital) Overall, the methodology proposed herein provides a radically different perspective from the conventional approaches utilized within the United States, as well as other countries in the world.
In conjunction with the broad business model proposed herein, there are representative applications, e.g., in a school, where the techniques of the present invention may be applied. Through monitoring of existing usage, thereby forming a baseline for energy consumption, the energy usage may be dynamically adjusted pursuant to a variety of market conditions, e.g., switching from electricity to a gas as a function of energy costs. In addition, multiple energy resources may be used at a given ratio of usage that is a function of the energy costs of the energy resources.
The business model also includes the negotiation of economically advantageous energy procurement agreements with service providers, and otherwise further optimizing the energy consumption of a facility by virtue of remote monitoring and maintenance.
A more complete appreciation of the present invention and the scope thereof can be obtained from the accompanying drawings which are briefly summarized below, the following detailed description of the presently-preferred embodiments of the invention, and the appended claims.
REFERENCES:
patent: 5430430 (1995-07-01), Gilbert
patent: 5566084 (1996-10-01), Cmar
patent: 5794212 (1998-08-01), Mistr, Jr.
patent: 5873251 (1999-02-01), Iino
patent: 5880536 (1999-03-01), Mardirossian
patent: 6088688 (2000-07-01), Crooks et al.
patent: 6122603 (2000-09-01), Budike, Jr.
patent: 6178362 (2001-01-01), Woolard et al.
patent: 6185483 (2001-02-01), Drees
patent: 2001/0025209 (2001-09-01), Fukui et al.
patent: 0 886 362 (1998-12-01), None
N. Messina, A. Pappalardo, G. Anastasi, B. Morgana: “Automation, Storage and Photovoltaic Generation to Smooth the Load Diagram” IEEE, 1996, pp. 904-907, XP002152034.
Golden Patrick T.
Sewell David R.
Smith Edward M.
Jarrett Ryan
Jenkens & Gilchrist P.C.
Perot Systems Corporation
Picard Leo
LandOfFree
System and method for energy management does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for energy management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for energy management will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3293895