Material or article handling – Self-loading or unloading vehicles
Reexamination Certificate
2000-09-25
2003-02-18
Fischetti, Joseph A. (Department: 3627)
Material or article handling
Self-loading or unloading vehicles
C414S678000, C414S481000, C414S917000, C405S003000, C405S007000, C114S044000
Reexamination Certificate
active
06520728
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention pertains generally to a watercraft lift or trailer.
Watercraft lifts are used to elevate a watercraft above the surface of a body of water for temporary or long-term storage when the watercraft is not being used. Watercraft trailers are often similar to watercraft lifts except that they can be attached to the trailer hitch of an automobile or truck and used to remove a watercraft from a body of water and to transport the craft to a different location over land.
Elevating a watercraft above the water is advantageous over mooring the watercraft to a dock or pier for several reasons. When a watercraft hull remains in a relatively still body of water over an extended period, aquatic organisms attach themselves to the hull, adversely affecting the hydrodynamics of the craft, and potentially fouling intakes, sensors, control surfaces, anchoring mechanisms, rudders and the like. These aquatic organisms, including various algae and barnacles, can be extremely difficult and expensive to remove.
Storing a watercraft on a lift is also advantageous in that it prevents the craft from being damaged as a result of moving back and forth against a dock or pier by wind or wave action. Elevating the craft also prevents extreme weather from causing the craft to become released from a dock. Removing a watercraft from a body of water using a trailer provides the same advantages. Trailers can also be used to store watercraft when not transporting them.
Known watercraft lifts typically include a frame supported by four adjustable legs for placement on the bottom of a lake or ocean, a cover, and a carriage assembly. The carriage assembly usually has a plurality of contact pads or skids which are constructed and arranged to support the hull of a given watercraft. A lifting mechanism attached to the frame of the lift allows the carriage assembly to be raised and lowered. This mechanism usually includes a winch and pulley system which is either manually operated or powered by a motor.
In operation, a watercraft is placed on such a watercraft lift by first lowering the carriage assembly below the surface of the water using the winch. Quite often, the unladen carriage assembly is too buoyant to easily lower below the surface of the water. This is especially true when the contact pads are made of wood or other buoyant material, or when the carriage assembly is made of a lightweight, hollow material such as tubular aluminum. Weights are often tied to the bottom of the carriage assembly to overcome this problem.
Once the carriage assembly is sufficiently submerged, the watercraft is carefully driven to a position above the carriage assembly. Care must be taken to avoid colliding the watercraft into the stationary upright members of the lift which support the carriage assembly and the cover. It is also important to prevent the watercraft from being positioned too far forward or rearward of the carriage assembly. It is usually necessary to obtain assistance from another person to properly position the watercraft over the carriage assembly and maintain that position until the carriage assembly can be raised enough to prevent the watercraft from moving. If the waters are rough, it can be very difficult to keep the watercraft in position and prevent the watercraft from being slammed against the stationary uprights while the carriage assembly is being raised, even with the aid of additional people.
Next, the carriage assembly is raised while the watercraft position is maintained above the carriage assembly. A manual winch is usually used to accomplish raising the assembly. The carriage assembly is raised until the watercraft is completely elevated above the surface of the water. Usually, it is desired to elevate the watercraft so that the propeller, as well as the hull, is above the water's surface. This is a laborious process which often takes several minutes and countless revolutions of a winch wheel.
A motor operated winch necessarily requires a motive force. This is usually electric current, either direct current from a battery or alternating current from a shore source. There are obvious hazards associated with the use of electric current near the water. Though direct current is not as dangerous as alternating current, marine batteries are expensive and, unless used in conjunction with a recharging apparatus, such as an internal.combustion engine equipped with an alternator-generator, short lived. The use of an internal combustion engine to assist in operating the winch is inefficient and impractical.
Lowering the craft also presents problems. The winch wheel is turned to lower the craft toward the water. This cannot be performed from inside the watercraft. Therefore, it is necessary to leave the craft unmanned, or to solicit the aid of an additional person to operate the winch.
Once the winch wheel is turned, gravity assists in the lowering of the watercraft, making the winch wheel spin accordingly. It is possible for the winch wheel to gain momentum and achieve dangerous speeds. Often, a knob protrudes outwardly from the wheel to assist in raising the lift. If attached, this knob can create a hazard when the wheel is spinning while the watercraft is being lowered.
Once the carriage assembly is lowered and the watercraft is floating in the water, the watercraft must be held in place while the winch operator boards the watercraft. This can be hazardous, especially in inclement weather. Additionally, rough waters can present the same hazards that exist when raising the watercraft, namely, the watercraft can collide with the stationary upright supports while the watercraft operator takes the helm and gets the watercraft motor started. Care must also be taken when backing the watercraft out of the lift once the watercraft is started and underway.
Known trailers provide similar hazards. Typically, the trailer is backed into the body of water down a ramp or watercraft landing. Once the trailer is in place and partially submerged, the watercraft must be sailed or driven to a position over the trailer. Usually, at least one other person, not aboard the watercraft, is needed to maintain the watercraft in a proper position over the trailer while the watercraft is attached to the trailer and winched forward to a final position for trailering. This person must keep the watercraft in position over the trailer as long as the rear of the watercraft is still afloat. During inclement weather, waves can reek havoc on efforts to minimize unwanted transverse motion.
Next the automobile is started and driven forward, thereby pulling the trailer and watercraft out of the water. As the trailer and watercraft are pulled forward, the rear separation between the watercraft and the trailer, due to the flotation of the watercraft, is diminished and the watercraft eventually becomes completely supported by the trailer. It is critical that the watercraft be held in position over the trailer during this step, especially in the case of watercraft having a hull design other than a V-hull. Examples of such designs include tri-hulls, catamarans, and pontoons. If these watercraft are not maintained in the proper position over the trailer while the watercraft is being pulled from the water, it is possible for the watercraft to fall off the trailer, crashing into the ground and causing great damage to the hull and the trailer.
There is a need for a watercraft lift or trailer which is easy to operate. More specifically, there is a need for a watercraft lift which assists a craft operator in aligning the watercraft with the lift prior to elevating the lift.
There is also a need for a lift which does not present collision hazards, such as stationary upright supports, which can be easily impinged on by the watercraft during normal docking operations.
There is still a further need for a watercraft lift which provides a safe, efficient method of elevating a watercraft, preferably using the power of the watercraft to achieve the desired elevation. Such a lift should obviate the need for pulleys and
Fischetti Joseph A.
Kamrath Alan D.
Rider Bennett Egan & Arundel
LandOfFree
System and method for elevating a watercraft does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for elevating a watercraft, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for elevating a watercraft will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3169479