System and method for dynamic sharing of connection resources

Multiplex communications – Data flow congestion prevention or control – Flow control of data transmission through a network

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S433000, C370S250000, C370S522000, C370S384000

Reexamination Certificate

active

06643262

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention relates to the management of connection-oriented telecommunications systems, and more particularly, to a technique for reusing core telecommunications system resources during periods of inactivity of a connection that does not bring with it a concomitant need for re-origination of the call when the connection is no longer dormant.
DESCRIPTION OF RELATED ART
The demand for telecommunications services has been growing at an ever-increasing rate. One of the factors behind this increasing demand for telecommunications services has been the growing popularity of online data communications (“datacom”) services such as those based on the Internet. In order to meet this demand, telecommunications network operators and suppliers have had to continuously upgrade the traffic carrying capacity of both their circuits as well as of the switch nodes interconnecting those circuits.
It has been observed that the demand for ordinary voice telephone service is becoming a decreasingly smaller part of the overall traffic demand in comparison to other telecommunications services such as data communications between computers, graphical image transmissions, video-conferencing and similar broadband services.
Current and future telecommunications subscribers, both residential and business, are likely to be connected, via common accesses, to a web of broadband networks operating at data rates of 150 megabits per second or above and which can support a wide range of different types of broadband services. Broadband networks may be generally defined as those which support user services requiring bit transfer rates substantially in excess of one megabit per second.
In general, broadband networks are likely to be built using Asynchronous Transfer Mode (ATM) technology as the underlying type of transport and switching technology. Broadband Integrated Services Digital Networks (B-JSDN), employing ATM technology can offer users the flexibility and capacity necessary to support diverse telecommunications services ranging from basic voice telephone service to high speed data transfer, video telephony, and high-quality television signal distribution. As would be obvious to those of ordinary skill in the art, ATM technology relies upon the compartmentalization of data into packets or cells which are transmitted and switched as individual units through the various nodes of a broadband network.
Current large telephone central offices may serve up to 100,000 customers. Based upon such a large number of terminals, a future B-ISDN central office may be required to operate at a switching capacity of around one terabit per second (10
12
bits per second) or greater. Assuming that each customer is served with a B-ISDN line operating at the design throughput level of 155.52 megabits per second (the STM-1 rate), an ATM exchange switch needs to be able to handle a peak throughput in excess of 15 terabits per second. However, in practice, the average throughput (i.e. the bandwidth utilization rate) is likely to be substantially lower than 15 terabits per second due to the inherent burstiness of datacom traffic on many levels.
Telecommunications equipment capable of handling high switching rates are expensive. consequently, it is desirable that such equipment be utilized as much as possible. Since the average additional revenue that may be realized by improving the utilization rate of the telecommunications equipment is higher at the core than at the periphery, there is a strong incentive for seeking increased efficiency in using core telecommunications resources.
For the purposes of the present patent application, the core telecommunications resources principally refer to the switching and transport resources that are located between and within a local exchange and a remote subscriber station (or more generally between network adaptors and a terminal) Under the traditional design paradigm for telecommunications systems, such core resources can be ordinarily be easily reallocated to other users or applications provided that transmission activity on a circuit-switched telephony connection can be monitored to detect periods of quiescence.
In the current era of explosive growth in data traffic due to the Internet, lots of subscribers use their personal computers to access the Internet via dial-up connections through their Internet Service Provider (ISP). In most regions of the United States of America, ISPs can be dialed as local calls. consequently, most users do not incur toll charges from their local telephone company in accessing their ISP.
Furthermore, most ISPs offer fixed-price access to the Internet. Thus, most users do not pay hourly charges for accessing the Internet. These factors have led to a vast increase in the data traffic on the telephone network. Thus, the unlimited simple and fixed price access to the Internet and other similar online services has led to a problem, colloquially referred to as the problem of “modem camping.”
In brief, the “modem camping” problem arises when a subscriber accessing an on-line services through a modem uses the available bandwidth of the transmission channel only sporadically. This results in an entire end-to-end circuit-switched telephony connection being rendered unavailable to other (more active) users.
It would be especially useful if an inactive data communication session could release the connection resources (both switching and transport) for use by others. As explained earlier, it would be best to start on this task by detecting and releasing core telecommunications resources that have been allotted to currently inactive connections.
Unlike voice traffic, data communications (“datacom”) traffic is inherently “bursty”. This means that the average traffic on a datacom link may be significantly different from the instantaneous traffic on the link. Furthermore, interactive computer applications typically generate discontinuous traffic patterns having long periods of inactivity.
For example, a user browsing the Internet may download an image from a remote web site. The telephone connection between the subscriber and the subscriber's Internet Service Provider (ISP) will on average be heavily loaded every time a graphical image file is accessed or downloaded by the subscriber. However, such periods of heavy utilization of the telephone connection are likely to be interspersed with extended periods of little or no activity.
The amount of time that a connection remains dormant has been found to depend upon many factors such as user behavior, the computer algorithms used and the sizes of the buffers in the various processors along the route. The use of circuit-switched telephony connections for handling datacom traffic is likely to result in the wastage of connection resources (including both switching and transport resources). This is because circuit-switched telephony connections traditionally provide an invariant connection resource (in terms of both switching and transport resources) between the two end points of the circuit. Consequently, all resources allocated to the telephony circuit remain blocked even during long periods of inactivity.
Recent attempts to reduce the wastage of connection resources within circuit-switched data communication links have focused on using “on-demand” dial-up connections that repeatedly dial-up and reestablish an end-to-end connection upon the detection of renewed activity. Simultaneously, the end-to-end session is kept active (“alive”) even during periods of inactivity.
This technique for increasing the utilization efficiency of intermediate link resources requires a dialed-up connections be reestablished several times during a single session. consequently, the current technique involves repetitive signaling, processing and resource-handling and imposes additional demands on the signaling and management subsystems of the telecommunications network.
Establishing a dialed-up connection consumes control system resources (e.g., signaling and processing resources) each time a new connection is establi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for dynamic sharing of connection resources does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for dynamic sharing of connection resources, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for dynamic sharing of connection resources will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.