System and method for determining reentrant ventricular...

Surgery – Diagnostic testing – Cardiovascular

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

10485676

ABSTRACT:
A method and system for identifying and localizing a reentrant circuit isthmus in a heart of a subject during sinus rhythm is provided. The method may include (a) receiving electrogram signals from the heart during sinus rhythm via electrodes, (b) creating a map based on the electrogram signals, (c) determining, based on the map, a location of the reentrant circuit isthmus in the heart, and (d) displaying the location of the reentrant circuit isthmus.

REFERENCES:
patent: 6236883 (2001-05-01), Ciaccio et al.
Spach, MS, et al. “The functional role of structural complexities in the propagation of depolarization in the atrium of the dog”, Circulation Research, (1982) 50:175-191.
Gardner, PI, et al. “Electrophysiologic and anatomic basis for fractioned electrograms recorded from healed myocardial infarcts”, Circulation, (1985) 72:596-611.
Pogwizd, S.M., and Corr P.B., “Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensioanl mapping” Circulation Research, (1987) 61:352-371.
Dillon, S.M., et al. “Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts”, Circulation Research, (1988) 63:182-206.
Chinushi, M., et al. “Proarrhythmic effects of antiarrhythmic drugs assessed by electrophysiologic study in recurrent sustained ventricular tachycardia”, Jpn Circ J, (1991) 55:133-141.
Smith, J.H., et al. “Altered patterns of gap junctional distribution in ischemic heart disease: an immunohistochemical study of human myocarium using laser scanning confocal microscopy”, Am J Path, (1991) 139:801-821.
Rohr, S., and Salzberg, B.M., Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording transmembrane voltage (MSORTV) in patterned growth heart cell cultures, J Gen Physiol,, (1994) 104:287-309.
Miller, J.M., et al., “Effect of Subendocardial Resection on Sinus Rhythm Endocardial Electrogram Abnormalities”, Circulation, (1995) 91:2385-2391.
Stevenson, W.G., et al., “Relation of pace-mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuitsin human infarct scars”, J Am Coll Cardiol., (1995) 26: 481-488.
Bogun, F., et al., “Comparison of effective and ineffective target sites that demonstrate concealed entrainment in patients with coronary artery disease undergoing radiofrequency ablation of ventricular tachycardia”, Circulation, (1997) 95: 183-190.
Hadjis, T.A., et al., “Effect of recording site of postpacing interval measurement during catheter mapping and entrainment of posinfarction ventricular tachycardia”, J Cardiovasc Electorphysiol., (1997) 8:398-404.
Harada, T., et al., “Catheter ablation of ventricular tachycardia after myocardial infarction: relationship of endocardial sinus rhythm late potentials to the reentry circuit”, JACC, (1997) 30:1015-1023.
Josephson, M.E., et al., “Pathophysiologic substrate for sustained ventricular tachycardia after myocardial infarction: relationship of endocardial sinus rhythm late potentials to the renetry circuit”, JACC, (1997) 30:1015-1023.
Peters, N.S., et al., “Disturbed connexin43 gap junction distribution correlates with the location of reenetrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia”, Circulation, (1997) 95:988-996.
Peters, N.S., et al., “Characteristics of the temporal and spatial excitable gap in anisotropic reentrant circuits causing sustained ventricular tachycardia”, Circ Res, (1998) 82:279-293.
Pogwizd, S.M., et al., “Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy”, Circulation, (1998) 98:2404-2414.
Schilling, R.J., et al., “Simultaneous endocardial mapping in the human left ventricle using a non-contact catheter”, Circulation, (1998) 98:887-898.
Stevenson, W.G., et al., “Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction”, Circulation, (1998) 98:308-314.
Bogun, F., et al., “Clinical value of the postpacing interval for mapping of ventricular tachycardia in patients with prior myocardial infarction”, J Cardiovas Electrophysiol., (1999) 10: 43-51.
Schilling, R.J., et al., “Feasibility of a non-contact catheter for endocardial mapping of human ventricular Tachycardia”, Circulation, (1999) 99:2543-2552.
Ciaccio, E.J., et al., “Dynamic Changes in Electogram Morphology at Functional Lines of Block in Reentrant Circuits During Ventricular Tachycardia in the Infarcted Canine Heart: A New Method to Localize Reentrant Circuits from electrogram Features Using Adaptive Template Matching”, J Cardiovasc Electrophysiol., (199) vol. 10, pp. 194-213.
Ciaccio, E.J., “Localization of the slow conduction zone during reentrant ventricular tachycardia”, Circulation, (2000) 102: 464-469.
Ciaccio, E.J., et al., “Relationship of Specific Electrogram Characteristics During Sinus Rhythm and Ventricular Pacing Determined by Adaptive Template matching to the Location of Functional Reentrant Circuits that Cause Ventricular Tachycardia in the Infarcted Canine Heart”, J Cardiovasc Electrophysiol., (2000) vol. 11, pp. 446-457.
Ellison, K.E., et al., “Catheter ablation for hemodynamically unstable monomorphic ventricular Tachycardia”, JCE, (2000) 11:41-44.
Ciaccio, E.J., et al., “Relationship between Sinus Rhythm Activation and the Reentrant Ventricular Tachycardia Isthmus” Circulation, (2001) 104:613-619.
Ciaccio, E.J., “Dynamic relationship of cycle length to reentrant circuit geometry and to the slow conduction zone during ventricular tachycardia”, Circulation, (2001) 103:1017-1024.
Ciaccio, E.J., et al. “Static Relationship of Cycle Length to Reentrant Circuit Geometry”, Circulation, (2001) 104:1946-1951.
Soejima, K, et al., “Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthumuses and sinus rhythm mapping”, Circulation, (2001) 104:664-9.
Ciaccio, E.J., “Premature excitation and onset of reentrant ventricular tachycardia”, Am J Physiol Heart Circ Physoil, (2002) vol. 283:H1-H11.
Scherlag, BJ, et al. “Sustained ventricular tachycardia: common functional properties of different anatomical Substrates”, In Zipes DP, Jalife J. eds. Cardiac electrophysiology and arrhythmias. Orlando Fla: Grune and Stratton, (1985) 379-387.
Kogan, B.Y., et al. “Excitation wave propagation within narrow pathways: Geometric configurations facilitating unidirectional block and reentry”, Physica D, (1992) 59:275-296.
Stevenson, W.G., et al. “Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction”, Circulation, (1993) 88:1647-1670.
Wit, A.L., and Janse, M.J., “Basic mechanisms of arrhythmias”, In: Wit AL and Janse MJ, eds. The ventricular arrhythmias of ischemia and infarction, New York, NY: Futura, (1993) 1-160.
Blanchard, S.M., et al., “Why is catheter ablation less successful than surgery for treating ventricular tachycardia that results from coronary artery disease?”, PACE, (1994) 17:2315-2335.
Cabo, C., et al., “Wave-front curvature as a cause of slow conduction and block in isolated cardiac Muscle”, Circulation Research, (1994) 75:1014-1028.
Aizawa, Y., et al., “Catheter ablation of ventricular tachycardia with radiofrequency currents, with special reference to the termination and minor morphologic change of reinduced ventricular tachycarida”, AM J Cardiol., (1995)

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for determining reentrant ventricular... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for determining reentrant ventricular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for determining reentrant ventricular... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3741684

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.