Thermal measuring and testing – Temperature measurement – Combined with diverse art device
Reexamination Certificate
2001-02-08
2004-04-06
Verbitsky, Gail (Department: 2859)
Thermal measuring and testing
Temperature measurement
Combined with diverse art device
C374S142000, C374S147000, C060S803000, C415S118000, C416S061000
Reexamination Certificate
active
06715916
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of gas turbine control systems and, in particular, for determination of and controlling the gas temperature at the discharge of the combustion system.
BACKGROUND OF THE INVENTION
Gas turbines operate at high temperatures, especially where the combustion system discharges into the inlet of a turbine. Satisfactory instrumentation has not been developed to reliably measure the gas temperature in the combustor discharge duct or turbine inlet section. However, the temperatures at the combustor discharge and turbine inlet are determined for purposes of controlling the gas turbine and sequencing of the combustion systems through a plurality of combustion modes. These temperatures are indirectly determined by the gas turbine control systems based on turbine parameters, e.g., exhaust gas temperature, compressor discharge temperature and pressure, and other well-known gas turbine parameters, that can be measured reliably.
Two key gas temperatures that can be reliably determined are the firing temperature and combustion reference temperature. These temperatures are used for controlling firing temperature and sequencing modes of the gas turbine combustion section.
Accurate control of the firing temperature, which is the gas temperature at the exit first stage nozzle of the turbine section, is needed because:
1. The firing temperature is a parameter that is traditionally used to limit the power output of gas turbines in industrial or electric utility service. Achievement of the rated or guaranteed output power generally requires that the gas turbine operate at its rated firing temperature.
2. The life of the turbine nozzles and buckets are a function of their operating temperature. Their life will be reduced if the firing temperature exceeds the rated temperature.
3. The emission performance of a gas turbine combustion system operating with premixed fuel and air is sensitive to its operating temperature. If combustion temperature exceeds the rated combustion temperature, then oxides of nitrogen (NOx) emissions will increase. If the actual temperature is lower than the rated temperatures, the carbon monoxide (CO) emissions will increase.
The combustion reference temperature is related to the gas temperature at the discharge of the combustor. The combustion reference temperature is significant to the control of a gas turbine operating at part load while transitioning from part load to full load, or unloading. The combustion reference temperature is employed for optimum sequencing of the combustion system and, thus, reliable operation and effective control of NOx and CO emissions in the turbine exhaust gas. Thus, accurate determination of the combustion reference temperature is needed for combustion sequencing.
For gas turbine control purposes, gas turbine firing temperature and combustion reference temperature have been conventionally determined using algorithms based on turbine exhaust gas temperature, turbine pressure ratio, and, in some cases, compressor discharge temperature. The input data for these algorithms include: measured turbine exhaust gas temperature; compressor discharge pressure, which simulates turbine inlet pressure; atmospheric pressure, which simulates turbine exhaust pressure; and compressor discharge temperature.
A conventional firing temperature algorithm is the sum of the turbine exhaust gas temperature and the temperature drop through the turbine. The exhaust gas temperature can be measured directly. The turbine temperature drop is a function of the turbine working fluid composition, pressure ratio of the turbine, turbine efficiency, and dilution by the air entering the gas stream from the air cooled nozzles, buckets, wheels and shrouds. Combustion reference temperature is determined by an algorithm that includes a similar algorithm as used to determine turbine temperature drop, and may include other algorithm elements having parameters related to determination of gas temperature at the discharge of the combustor. Since the turbine efficiency and cooling air dilution varies with operating conditions, the algorithms for firing temperature and combustion reference temperature are usually derived from a series of cycle design calculations that are specific to each gas turbine model and tailored to conditions throughout the normal operating range of the gas turbine model. The algorithms are a function of exhaust gas temperature and turbine pressure ratio with a bias for compressor discharge temperature, which is linearized as much as practical for stable control operation.
The water content in the gas passing through a turbine is presumed to be at a design water content level in the algorithms used to determine the combustion reference temperature and firing temperature. The majority of the gaseous components in the turbine working fluid are carbon dioxide and water formed from the combustion of hydrocarbon fuel, air that was not used for combustion (excess air), and water vapor that was included in the combustion air. The varying water content in the turbine working fluid results from the varying water content in the combustion air. The effect of off-design water content in the working fluid passing through the turbine has not been considered in current control systems with respect to its effect on the calculation of gas temperature drop through the turbine for control purposes. Rather, the conventional algorithms incorporate an assumption that the water content of the working fluid is at the design (or intended) level of water in the working fluid. These conventional algorithms do not take off design levels of water content. The water content of the working fluid affects the gas temperature drop through the turbine. This is explained by the effect of the water content on the average thermodynamic characteristics of turbine working fluid. The thermodynamic characteristic affecting this process is the ratio of specific heats (specific heat at constant pressure divided by the specific heat at constant volume), which relates the temperature ratio of a thermodynamic process to its pressure ratio as follows:
T
1
/
T
2
=(
P
1
/
P
2
)exp
K
Where:
T
1
=Inlet Temperature (degrees R)
T
2
=Discharge temperature (degrees R)
P
1
=Inlet pressure (psia)
P
2
=Discharge pressure (psia)
K=Ratio of specific heats
The isentropic exponent is for water vapor 1.3, and is 1.4 for air and other components of the turbine working fluid. The reduced isentropic exponent for water vapor reduces the temperature drop when expanded over a pressure ratio as compared to air and carbon dioxide. This factor has a significant effect on the firing temperature and combustion temperature calculation when the gas turbine operates with a working fluid water content differing from the design water level. Since the major fraction of the working fluid is combustion air, which is ambient air or humidified ambient air, an off-design water content occurs when the ambient air humidity differs substantially from the design basis for the control algorithm, and when water is artificially injected into the combustion air by an evaporative cooler or by a supersaturation system (wet compression) for gas turbine power augmentation.
Gas turbine firing temperature controls and combustion sequencing as a function of combustion reference temperature currently do not include features to respond to the variation in water vapor in the gas flowing through the turbine section, which results in an erroneous calculation of the gas temperature drop through the turbine. If the actual water vapor content in the combustion air is substantially higher than the design water content, the control system will erroneously limit the firing temperature to a temperature lower than the rated firing temperature and sequence the combustion system at combustion reference temperature lower than an optimum reference temperature. If the actual water vapor content in the combustion air is substantially lower than the design vapor content, the contro
Garry Robert S.
Tomlinson Leroy O.
General Electric Company
Nixon & Vanderhye P.C.
Verbitsky Gail
LandOfFree
System and method for determining gas turbine firing and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for determining gas turbine firing and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for determining gas turbine firing and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3255246