System and method for creating a semantic web and its...

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06311194

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
The invention relates to a system and method for semantically classifying data and utilizing the semantically classified data. More specifically, the invention relates to utilization of a WorldModel to semantically classify data.
2. Description of Related Art
The Internet is a global network of connected computer networks. Over the last several years, the Internet has grown in significant measure. A large number of computers on the Internet provide information in various forms. Anyone with a computer connected to the Internet can potentially tap into this vast pool of information.
The most wide spread method of providing information over the Internet is via the World Wide Web (the Web). The Web consists of a subset of the computers connected to the Internet; the computers in this subset run Hypertext Transfer Protocol (HTTP) servers (Web servers). The information available via the Internet also encompasses information available via other types of information servers such as GOPHER and FTP.
Information on the Internet can be accessed through the use of a Uniform Resource Locator (URL). A URL uniquely specifies the location of a particular piece of information on the Internet. A URL will typically be composed of several components. The first component typically designates the protocol by with the address piece of information is accessed (e.g., HTTP, GOPHER, etc.). This first component is separated from the remainder of the URL by a colon (‘:’). The remainder of the URL will depend upon the protocol component. Typically, the remainder designates a computer on the Internet by name, or by IP number, as well as a more specific designation of the location of the resource on the designated computer. For instance, a typical URL for an HTTP resource might be:
http://www.server.com/dir
1
/dir
2
/resource.htm
where http is the protocol, www.server.com is the designated computer and /dir
1
/dir
2
/resouce.htm designates the location of the resource on the designated computer.
Web servers host information in the form of Web pages; collectively the server and the information hosted are referred to as a Web site. A significant number of Web pages are encoded using the Hypertext Markup Language (HTML) although other encodings using the eXtensible Markup Language (XML) or the Standard Generic Markup Language (SGML) are becoming increasingly more common. The published specifications for these languages are incorporated by reference herein. Web pages in these formatting languages may include links to other Web pages on the same Web site or another. As known to those skilled in the art, Web pages may be generated dynamically by a server by integrating a variety of elements into a formatted page prior to transmission to a Web client. Web servers and information servers of other types await requests for the information that they receive from Internet clients.
Client software has evolved that allows users of computers connected to the Internet to access this information. Advanced clients such as Netscape's Navigator and Microsoft's Internet Explorer allow users to access software provided via a variety of information servers in a unified client environment. Typically, such client software is referred to as browser software.
The Web has been organized using syntactic and structural methods and apparatus. Consequently, most major applications such as search, personalization, advertisements, and e-commerce, utilize syntactic and structural methods and apparatus. Directory services, such as those offered by Yahoo! and Looksmart, offer a limited form of semantics by organizing content by category or subjects, but the use of context and domain semantics is minimal. When semantics is applied, critical work is done by humans (also termed editors or catalogers), and very limited, if any, domain specific information is captured.
Current search engines rely on syntactic and structural methods. The use of keyword and corresponding search techniques that utilize indices and textual information without associated context or semantic information is an example of such a syntactic method. Use of these syntactic methods in information retrieval using keyword-based search is the most common way of searching today. Unfortunately, most search engines produce up to hundreds of thousands of results, and most of them bear little resemblance to what the user was originally looking for, mainly because the search context is not specified and ambiguities are hard to resolve as discussed in Jimmy Guterman, “The Endless Search, The Industry Standard”, Dec. 20, 1999 http://www.thestandard.com/article/display/0,1151,8340,00.html. One way of enhancing a search request is using Boolean and other operators like “+/−” (word must/must not appear) or “NEAR” whereby the number of resulting pages can be drastically cut down. However, the results still may bear little resemblance to what user is looking for.
Searches provided by companies like Snap.com and AltaVista, currently allow users to query for non-textual assets including video or audio files. Searches of this kind are usually formed by specifying a number of keywords and, in some cases, a desired media type. Even if the results are restricted to be of a certain media type, those keywords are not put into a semantic context, and the consequence is poor precision of the results.
Most search engines and Web directories offer advanced searching techniques to reduce the amount of results (recall) and improve the quality of the results (precision). Some search methods utilize structural information, including the location of a word or text within a document or site, the numbers of times users choose to view a specific results associated with a word, the number of links to a page or a site, and whether the text can be associated with a tag or attributes (such as title, media type, time) that are independent of subject matter or domain. In a few cases when domain specific attributes are supported (as in the genre of music), the search is limited to one domain or one site (i.e. Amazon.com, CDNow.com). It may also be limited to one purpose, such as product price comparison. Also, the same set of attributes is provided for search across all assets (rather than domain specific attributes for a certain collection of assets, context, or domain).
Grouping search results by Web sites, as some search engines like Excite offer, can make it easier to browse through the often vast number of results. NorthernLight takes the idea of organizing the Web one step further by providing a way of organizing search results into so-called “buckets” of related information (such as “Thanksgiving”, “Middle East & Turkey”, a.s.o). Both approaches do not improve the search quality per se, but they facilitate the navigation through the search results.
To further aid the user in getting to the information users are looking for, some search engines provide “premium content” editorially collected and organized into directories that help put the search in the right context and resolve ambiguities. For example, when searching for “turkey” on Excite.com, the first results include links to premium content information on both turkey the poultry and Turkey the European country. Yahoo is a Web directory that lets the user browse their taxonomy and search only within certain domains to cut down on the number of results and improve precision.
Directory services support browsing and a combination of browsing with a limited set of attributes for the content managed or aggregated by the site. When domain information is captured, a host of people (over 1200 at one company providing directing services and over 350 at another) classifies new and old Web pages, to ensure the quality of those domain search results. This is an extremely human-intensive process. The human catalogers or editors use hundreds of classification or keyword terms that are mostly proprietary to that company. Considering the size and growth rate of the World Wide Web, it seems almost impossib

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for creating a semantic web and its... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for creating a semantic web and its..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for creating a semantic web and its... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2604597

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.