System and method for contraband detection using nuclear...

Electricity: measuring and testing – Particle precession resonance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S300000, C324S309000, C324S318000

Reexamination Certificate

active

06194898

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to a bulk substance detection system for detecting concealed explosives and narcotics, and more particularly to a practical system and method for such contraband detection employing nuclear quadrupole resonance (NQR).
BACKGROUND ART
Earlier work in detecting contraband substances centered on the subject of nuclear magnetic resonance (NMR). Work in this area is reflected in U.S. Pat. Nos. 4,166,972, 4,296,378 and 4,514,691. A drawback of NMR is that is requires relatively large magnets. Magnets are relatively expensive, would likely cause personnel to be exposed to large static magnetic fields, and could damage magnetically recorded material.
Another attempt at explosives detection employed thermal neutron analysis (TNA), which can detect nitrogen in any form. Although it could detect explosives, it was also triggered by nitrogen-rich nylon and wool, and other innocuous items. These shortcomings resulted in a high rate of false positives. Because it employed potentially hazardous radioactive emissions, TNA systems were also required to be heavily shielded. As a consequence, TNA systems were very large, very expensive, and also produced a high rate of false positives.
X-ray screening, commonly used in airports, does not have the same overall limitations as TNA. However, it cannot alert the operator to the presence of explosives or drugs, much less identify them. X-ray screening can only “see images that the operator must interpret quickly.” Further, X-ray screening emits potentially hazardous ionizing radiation.
With respect to explosives, plastic explosives such as C4 and Semtex, containing RDX and PETN, have an almost infinite variety of possible shapes and uses for terrorist bombing tactics. Plastic explosives are highly stable, have clay-like malleability and are deadly in relatively small quantities. A small piece of plastic explosive, a detonator, and a trip wire inside a large mailing envelope can cause a deadly explosion. Unfortunately, without close—and potentially dangerous—visual inspection, plastic explosives can be made virtually untraceable. Because of the drawbacks of TNA, NMR and X-ray, as mentioned above, they have generally proven ineffective for practical bulk detection of these types of explosives. In particular, detection of sheet explosives, typically having a thickness as small as 6.35 mm (0.25 inch), has not been effectively accomplished by prior technologies.
The wide-scale attempts to fight the illegal drug trade indicates that narcotics detection is also extremely important. The need for a simple procedure for detecting drugs inside sealed containers, mail parcels, and other small packages, quickly and accurately, is immeasurable. Conventional detection methods are time-consuming, costly, and have only marginal reliability at best.
NQR is a branch of radio frequency spectroscopy that exploits the inherent electrical properties of atomic nuclei. Nuclei with non-spherical electric charge distributions possess electric quadrupole moments. Quadrupole resonance arises from the interaction of the nuclear quadrupole moment of the nucleus with the local applied electrical field gradients produced by the surrounding atomic environment.
Any chemical element's nucleus which has a spin quantum number greater than one half can exhibit quadrupolar resonance. Many substances (approximately 10,000) have been identified that exhibit quadrupolar resonance, among such nuclei being:
7
Li,
9
Be,
14
N,
17
O,
23
Na,
27
Al,
35
Cl,
37
Cl,
39
K,
55
Mn,
75
As,
79
Br,
81
Br,
127
I,
197
Au, and
209
Bi. It so happens that some of these quadrupolar nuclei are present in explosive and narcotic materials, among them being nitrogen (
14
N), chlorine (
35
Cl,
37
Cl), oxygen (
17
O), sodium (
23
Na), and potassium (
39
K). The most studied quadruple nucleus for explosives and narcotics detection is nitrogen.
In solid materials, electrons and atomic nuclei produce electric field gradients. These gradients modify the energy levels of any quadrupolar nuclei, and hence their characteristic transition frequencies. Measurements of these frequencies or relaxation time constants, or both, can indicate not only which nuclei are present but also their chemical environment.
When an atomic quadrupolar nucleus is within an electric field gradient, variations in the local field associated with the field gradient affect different parts of the nucleus in different ways. The combined forces of these fields cause the quadrupole to experience a torque, which causes it to precess about the electric field gradient. Precessional motion generates an oscillating nuclear magnetic moment. An externally applied radio frequency (RF) magnetic field in phase with the quadrupole's precessional frequency can tip the orientation of the nucleus momentarily. The energy levels are briefly not in equilibrium, and immediately begin to return to equilibrium. As the nuclei return, they produce an RF signal, known as the free induction decay (FID). A pick-up coil detects the signal, which is subsequently amplified by a sensitive receiver to measure its characteristics.
One distinguishing feature of an NQR response is its precessional frequency. Two independent factors determine the precessional frequency: the quadrupolar nucleus, and its local crystalline environment. There may be one or more characteristic NQR frequencies for each substance containing quadrupolar nuclei.
The second distinguishing features are the NQR relaxation times. Relaxation times are a measure of the nuclei's rate of return to the equilibrium state following disturbance by an RF pulse. Relaxation times are compound-, temperature-, and pressure-specific. Relaxation times also determine the repetition rate and timing of RF pulses required for exciting and detecting a specific NQR signal. Relaxation times can be as short as a few hundred microseconds or as long as several seconds.
Detection of NQR signals normally requires RF transmitting and receiving apparatus. To minimize noise and radio frequency power requirements and improve receiver sensitivities, conventional NQR systems use a narrow band (high Q) sample coil in both the transmitting and receiving equipment. Even so, several factors can significantly degrade the effectiveness of detecting NQR signals. Among these factors are: (1) the presence of conductive materials inside the sample coil; (2) the presence of materials with a high dielectric constant inside the sample coil; (3) temperature, which can affect the value of the capacitance used for tuning and matching the RF coil; and (4) mechanical movement of the coil which respect to its surroundings. All of these factors can cause serious de-tuning of the detection apparatus, which in turn, lowers the detection sensitivity of the coil. Accordingly, NQR systems have largely been limited to small sample laboratory systems with little or no “real-world” potential.
The NQR energy level transitions are observed primarily in the radio frequency range. Detection of these transitions requires an RF source to excite the transition, and an RF receiving mechanism to detect the signals returning from the nuclei. Normally, the signals appear at a pre-defined frequency. An RF coil tuned to, or close to, that predefined frequency can excite and/or detect those signals. The signals are of very low intensity and can only be observed for a short time, approximately 10 &mgr;s to 10 ms. As a consequence, there is a need for an NQR receiver that can be tuned to a (usually) high Q, has very low noise, and is capable of fast recovery after a high-voltage RF pulse.
Previous work in this area is reflected in U.S. Pat. Nos. 4,887,034, 5,206,592, 5,233,300 and 5,365,171. Use of NQR for explosives and narcotics detection is also discussed in Buess et al.,
Explosives Detection By
14
N Pure NQR,
Advances in Analysis and Detection of Explosives (J. Yinon (ed.)) pp. 361-368 (1993), and Shaw,
Narcotics Detection Using Nuclear Quadrupole Resonance
(NQR), Contraband and Cargo Inspection Technology I

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for contraband detection using nuclear... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for contraband detection using nuclear..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for contraband detection using nuclear... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.