System and method for context-based document retrieval

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000

Reexamination Certificate

active

06633868

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to computer-implemented techniques for information retrieval. More specifically, it relates to query-based search engines and methods for improved searching through the use of contextual information.
BACKGROUND ART
The basic goal of a query-based document retrieval system is to find documents that are relevant to the user's input query. Since a typical query comprises only a few words, prior art techniques are often unable to discriminate between documents that are actually relevant and others that simply happen to use the query terms.
Conventional search engines for unstructured text documents can be divided into two groups: keyword-based, in which documents are ranked on the incidence (i.e., the existence and frequency) of keywords provided by the user, and categorization-based, in which information within the documents to be searched, as well as the documents themselves, are pre-classified into “topics” that are used to augment the retrieval process. The basic keyword search is well-suited for queries in which the topic can be described by a unique set of search terms. This method selects documents based on exact matches to these terms and then refines searches using Boolean operators (and, not, or) that allow users to specify which words and phrases must and must not appear in the returned documents. Constructing Boolean search queries is considered laborious and difficult for most people to use effectively. Moreover, unless the user can find a combination of words appearing only in the desired documents, the results will generally contain too many unrelated documents to be of use.
Several improvements have been made to the basic keyword search. Query expansion is a general technique in which keywords are used in conjunction with a thesaurus to find a larger set of terms with which to perform the search. Query expansion can improve recall (i.e., results in fewer missed documents) but usually at the expense of precision (i.e., results in more unrelated documents) due in large part to the increased number of documents returned. Natural language parsing falls into the larger category of keyword pre-processing in which the search terms are first analyzed to determine how the search should proceed (e.g., Infoseek's Ultraseek Server). For example, the query “West Bank” comprises an adjective modifying a noun. Instead of treating all documents that include either “west” or “bank” with equal weight, keyword pre-processing techniques can instruct the search engine to rank documents that contain the phrase “west bank” more highly. IBM's TextMiner makes extensive use of query expansion and keyword pre-processing methods, recognizing ~10
5
commonly used phrases. Even with these improvements, keyword searches may fail in many cases where word matches do not signify overall relevance of the document. For example, a document about experimental theater space is unrelated to the query “experiments in space” but may contain all of the search terms.
Categorization methods attempt to improve the relevance by inferring “topics” from the search terms and retrieving documents that have been predetermined to contain those topics. The general technique begins by analyzing the document collection for recognizable patterns using standard methods such as statistical analysis (e.g., Excite's Web Server) and neural network classification (e.g., Autonomy's Agentware). As with all such analyses, word frequency and proximity are the parameters being examined and/or compiled. Documents are then “tagged” with these patterns (often called “topics” or “concepts”) and retrieved when a match with the search terms or their associated topics have been determined. In practice, this approach performs well when retrieving documents about prominent (i.e., statistically significant) subjects. Given the sheer number of possible patterns, however, only the strongest correlations can be discerned by a categorization method. Thus, for searches involving subjects that have not been pre-defined, the subsequent search typically relies solely upon the basic keyword matching method is susceptible to the same shortcomings.
It is appropriate to note here that many categorization techniques use the term “context” to describe their retrieval processes, even though the search itself does not use any contextual information (i.e., how collections of words appear relative to one another in order to define a context). U.S. Pat. No. 5,619,709 to Caid et. al. is an example of a categorization method that uses the term “context” to describes various aspects of their search. Caid's “context vectors” are essentially abstractions of categories identified by a neural network; searches are performed by first associating, if possible, keywords with topics (context vectors), or allowing the user to select one or more of these pre-determined topics, and then comparing the multidimensional directions of these vectors with the search vector via the mathematical dot product operation (i.e., a projection). In many respects, this process is identical to the keyword search in which word occurrence vectors are projected on a keyword vector.
U.S. Pat. No. 5,926,812 to Hilsenrath et. al. describes an improvement to the ranking schemes of conventional search engines using a technique similar to categorization. Hilsenrath's application is rather specialized in that the search relies upon first having a set of documents about the topic of interest in order to retrieve more like it, rather than the more difficult task of finding related documents using only a limited set of keywords provided by the user. Hilsenrath's method first analyzes a set of documents and extracts a “word cluster” which is analogous to the “topics” described above. The words defined by this word cluster are then fed to an existing keyword-based search engine, which returns a set of documents. These documents are then re-ranked by comparing the original word cluster with similar ones computed for each document. Although the comparison step does use context-like information (e.g., word pair proximities), the overall method is fundamentally limited by the fact that it requires already having local documents related to the topic of interest. The quality of the search is also limited by the quality and completeness of these local documents. In some sense, it is really an improvement to a ‘more like this document’ search feature than a complete query-based document retrieval method.
SUMMARY OF THE INVENTION
The disclosed invention provides a computer-implemented method for improving query-based document retrieval using the vast amount of contextual information (i.e., information about the relationships between words) within the document collection to be searched. The goals of a context-based search are 1) to take advantage of this wealth of information in order to automatically facilitate the specification of search topics from a limited set of search terms, and 2) to rank documents using a measure of contextual similarity that takes into an account the usage and relationship of all words within a each document. Essentially, words related to a particular topic tend to frequently occur in close proximity to one another. When the user specifies a query, the information compiled from the document collection can be enough to determine the desired topic and reconstruct the associated context (e.g., related words, usage proportions, etc.). Documents with the greatest contextual similarity are most likely to be relevant to the search topic.
As implied in the Background Art, categorization techniques also rely upon the fact that even without a “semantic” understanding of a text, highly useful contextual information can be read and compiled from a document collection by analyzing the statistics of word occurrence. But unlike categorization, context-based searching recognizes that in order to use this contextual information effectively, all of the statistics must be kept. Instead of analyzing the co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for context-based document retrieval does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for context-based document retrieval, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for context-based document retrieval will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157534

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.