Data processing: generic control systems or specific application – Generic control system – apparatus or process – Plural processors
Reexamination Certificate
1998-07-13
2003-12-30
Khatri, Anil (Department: 2121)
Data processing: generic control systems or specific application
Generic control system, apparatus or process
Plural processors
C700S009000, C700S017000, C604S019000, C604S031000, C705S003000, C235S375000, C235S380000
Reexamination Certificate
active
06671563
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates generally to systems for managing patient care in a health care facility, and more particularly, to systems for collecting data and controlling the delivery of patient care.
Medical institutions are faced with a competitive environment in which they must constantly maintain or improve profitability and yet simultaneously improve patient care. Several factors contribute to the ever increasing costs of health care, whether it is delivered to the patient in a hospital or out-patient clinic setting. Health care deliverers face increased complexity in the types of treatment and services available, but also must provide these complex treatments and services efficiently, placing a premium on the institution's ability to provide complex treatment while maintaining complete and detailed medical records for each patient.
It is also advantageous to have a care management system that combines all of the various services and units of a health care institution into an interrelated automated system to provide “just-in-time” delivery of therapeutic and other drugs to the patient. Such a system would prevent administering an inappropriate medication to a patient by checking the medication against a database of known allergic reactions and/or side-effects of the drug against the patent's medical history. The interrelated system should also provide doctors, nurses and other care-givers with updated patient information at the bedside, notify the institution's pharmacy when an additional drug is required, or when a scheduled treatment is running behind schedule, and automatically update the institution's accounting database each time a medication or other care is given.
Inaccurate recording of the administration of drugs and usage of supplies involved in a patient's treatment results in decreasing revenues to the institution by failing to fully capture billing opportunities of these actual costs. Inadequate management also results in a failure to provide an accurate report of all costs involved in treating a particular illness.
In many hospitals and clinical laboratories, a bracelet device having a patient's name printed thereon is permanently affixed to a patient upon admittance to the institution in order to identify the patient during his or her entire stay. Despite this safeguard, opportunities arise for patient identification error. For example, when a blood sample is taken from a patient, the blood sample must be identified by manually transcribing the patient's name and other information from the patient's identification bracelet. In transferring the patient's name, a nurse or technician may miscopy the name or may rely on memory or a different data source, rather than actually reading the patient's bracelet.
Moreover, manually transferring other information, such as the parameters for configuring an infusion pump to dispense medication may result in errors that reduce the accuracy and/or effectiveness of drug administration and patient care. This may result in an increased duration of treatment with an attendant increase in costs.
Hospitals and other institutions must continuously strive to provide quality patient care. Medical errors, such as where the wrong patient receives the wrong drug at the wrong time, in the wrong dosage or even where the wrong surgery is performed, are a significant problem for all health care facilities. Many prescription drugs and injections are identified merely by slips of paper on which the patient's name and identification number have been handwritten by a nurse or technician who is to administer the treatment. For a variety of reasons, such as the transfer of patients to different beds and errors in marking the slips of paper, the possibility arises that a patient may be given an incorrect treatment. This results in increased expense for the patient and hospital that could be prevented using an automated system to verify that the patient is receiving the correct care.
Various solutions to these problems have been proposed, such as systems that use bar codes to identify patients and medications, or systems allowing the bedside entry of patient data. While these systems have advanced the art significantly, even more comprehensive systems could prove to be of greater value.
What has been needed, and heretofore unavailable, is an integrated, modular system for tracking and controlling patient care and for integrating the patient care information with other institutional databases to achieve a reliable, efficient, cost-effective delivery of health care to patients. The invention fulfills these needs and others.
SUMMARY OF THE INVENTION
Briefly and in general terms, the present invention provides a new and improved patient management system capable of monitoring, controlling and tracking the administration of care in a health care institution.
Generally, the patient management system comprises a number of CPUs having a variety of input and output devices for receiving patient data and for generating or displaying reports. A system of software programs operates on the CPUs to record, process, and produce reports from a database whose data is representative of the care a patient receives in the institution. The CPUs are connected together, along with at least one dedicated file server, to form a network. Patient data is input by users of the personal computers, and is stored in a data storage device connected to the file server.
More specifically, in a more detailed aspect by way of example and not necessarily of limitation, the patient management system includes a pharmacy computer, a nursing station CPU including a video display and printer and bedside CPUs connected to various clinical devices such as infusion pumps for providing medication to a patient and a barcode reader for reading barcode labels either affixed to the patient's identification bracelet or a label on a medication container. In operation, the patient management system verifies that the right medication is being dispensed to the right patient in the right dosage via the right delivery route at the right time by maintaining a database of information relating to the patient, the patient's condition, and the course of treatment prescribed to treat the patient's illness.
The patient wears an identification device that includes a barcode that can be read by a barcode reader connected to the bedside CPU. Medication to be administered to the patient in the course of the patient's treatment is identified with a label that is printed by a barcode printer in the pharmacy or by the manufacturer's supplied barcodes on unit dose packaging. When the medication is administered to the patient by a care-giver, the care-giver uses the barcode reader connected to the bedside CPU to read the barcode on the patient's identification device and the barcode on the label identifying the medication to be dispensed. The patient management system compares the patient's identity with the medication and verifies that it is the correct medication for the patient. Additionally, the caregiver may also have an identification device that bears a barcode with the caregiver's name and other information. Using the barcode reader, the care giver's identity can thus be stored in the database and linked to the treatment given to the patient to ensure complete and accurate tracking of all treatment given to the patient.
In another aspect, an identification system is provided that is passive in nature. That is, the system operates to automatically detect and identify an individual, such as a patient and/or caregiver without any particular action being required on the part of the individual. In a further aspect, an RF transponder is mounted at a patient's room or treatment area and automatically detects an identification device, such as a wrist band, on the individual to identify the individual. The identification device may comprise an electrical circuit.
In a further aspect, the pati
Chamberlain Craig
Engelson Joseph J.
Alaris Medical Systems, Inc.
Fulwider Patton Lee & Utecht LLP
Hartman Jr. Ronald D
Khatri Anil
LandOfFree
System and method for collecting data and managing patient care does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for collecting data and managing patient care, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for collecting data and managing patient care will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3101392