Image analysis – Applications – Manufacturing or product inspection
Reexamination Certificate
1998-08-14
2001-03-13
Mehta, Bhavesh (Department: 2721)
Image analysis
Applications
Manufacturing or product inspection
C382S146000, C356S237100, C250S559340, C348S126000
Reexamination Certificate
active
06201892
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to inspection systems and methods and in particular, to a system and method of capturing a plurality of images of an object illuminated using different illumination source by a single illumination detection device and combining the plurality of images using arithmetic operations to enhance the detectability of defects in the object.
BACKGROUND OF THE INVENTION
Digital data and signal processing techniques and technology have tremendously advanced the ability to use computers as data processing systems to accomplish sophisticated inspection procedures without human intervention. Almost every type of product can benefit from low cost, high precision, high speed inspection technology derived from these new digital data and signal processing techniques.
For example, in computers and other electronic systems, the electrical connections between electronic components (“chips”) are critical to the operation of the system. As a result of recent technological advances, electronic components are decreasing in size and increasing in complexity, requiring a larger number of electrical connections to be made in a smaller area. Inspection of the electronic components during a manufacturing process helps assure that electrical contacts are properly formed and prevents failed electrical connections between electronic components.
Semiconductor chips, for example, must be physically and electronically connected to printed circuit boards using solder or flux between electrical contacts on the chip and the circuit board. One type of electrical contact includes metal areas or pads on the semiconductor chip that must be electrically connected to corresponding metal areas or pads on the printed circuit board. Typically, small deposits of solder and/or flux are placed on the pads, heated and re-flowed, establishing a mechanical and electrical connection between the corresponding pads.
A common soldering technique is to use preformed balls of solder that are placed on the metal pads on the chip or substrate of an electronic component, commonly known as a ball grid array (BGA). With the decrease in size of the electronic components and the increase in complexity, as many as 400 or more solder balls must be precisely positioned in a predefined pattern on the chip or substrate to electrically connect the chip to the printed circuit board. During the process of positioning and adhering the solder balls to the metal pads on the chip or substrate, a number of defects can occur that will detrimentally affect the electrical connection between the chip and the printed circuit board.
If a solder ball does not sufficiently adhere to one of the pads, a critical electrical connection between the chip and the printed circuit board could be lost. The misplacement of a solder ball can also result in a failed connection and/or an electrical short circuit with another adjacent solder ball or metal pad. A solder ball that is malformed, too large or too small could also result in a defective electrical connection even if properly positioned at the precise location on the pad.
Inspection of the solder balls is therefore critical to assure proper size and shape of the solder balls as well as precise placement and adherence of the solder balls to the appropriate pads on the printed circuit board prior to establishing connections between the electronic components. Inspection is also required for other electronic components requiring precise electrical connections.
One prior art method of inspection is to have a human operator visually inspect each chip, printed circuit board or other electronic component to detect defects in the solder balls or other electrical contacts. Manual inspection, however, is time-consuming, inaccurate, and a strain on human inspectors, particularly in light of the decreased size of the electronic components and increased number of connections.
Video systems have also been used to inspect solder balls or other contacts or features on electronic components. In such systems, a light, such as a ring light, illuminates the surface of the electronic component to be inspected. A camera detects the light reflected from the solder balls or contacts on the electronic component and the reflected image is displayed on a monitor.
The ring lights used in prior art inspection systems have been unable to provide adequate illumination of solder balls on an electronic component. One problem occurs when the ring lights do not provide light beams of sufficient intensity at outer regions of the area being inspected and thus fail to illuminate some of the solder balls being inspected, resulting in inaccurate determinations of the absence/presence or position of the solder balls. Another problem exists when a solder ball is only partially illuminated, preventing an accurate measurement of the true diameter and circularity of the solder ball.
Other inspection devices direct the light beams at a high angle with respect to the chip, causing the light beams to reflect off the metalized pads, the substrate surface, or other substantially flat reflective surfaces that are not being inspected. In the resulting illuminated image detected by the video camera, the solder balls are difficult to discern from the metal pads and other substantially flat reflective surfaces. This is a particular problem where the illuminated image is to be processed and analyzed by an image processor to detect the absence/presence of solder balls and the condition of solder balls (e.g. location, diameter, and circularity).
Other ring lights direct light parallel to the surface of the component being inspected and must be positioned against or around each electronic component to obtain sufficient illumination of the entire surface of the electronic component. If this type of ring light is not positioned against the surface of the component being inspected, the component will not be sufficiently illuminated, particularly at the edges of the component. This type of ring light must therefore be raised and lowered for each individual electronic component to adequately illuminate each electronic component and does not allow a large number of electronic components to be sequentially inspected quickly during a manufacturing process.
A further problem is that many prior art vision inspection systems still require a human operator to examine the illuminated image of the electronic component and detect defects such as missing, misplaced or malformed solder balls. A visual inspection of the illuminated image still does not enable an accurate measurement of the size and shape of the solder balls.
Furthermore, there are other features that may be of concern when an object is inspected. Such additional features may include, for example surface defects, such as scratches, voids and pits in plastic overmolding on electronic packages. These features, in addition to solder balls and the like, may be illuminated in a manner similar to the other features of interest when an object is illuminated using a single illumination source. Therefore, they may be confused with other objects of interest or provide so much information to a vision inspection system that system confusion is created, which would adversely affect all of the image inspection operations.
Accordingly, a need exists for a system and method for inspecting reflective objects, surfaces or elements that enhances the illumination of objects of interest so that they can be adequately inspected, while at the same time minimizing the illumination of objects that are not of particular concern to the specific inspection process being performed. There is also a need for a flexible inspection system and method, which may be reconfigured in real-time to capture a plurality of images of an object being inspected so that different features may be enhanced and inspected.
SUMMARY OF THE INVENTION
The present invention provides an automated system and method for inspecting selected reflective features on an object that includes a plurality of reflective features by using ari
King Steven Joseph
Ludlow Jonathan Edmund
Acuity Imaging, LLC
Bourque & Associates P.A.
Mehta Bhavesh
LandOfFree
System and method for arithmetic operations for electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for arithmetic operations for electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for arithmetic operations for electronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2505295