Electrical computers and digital processing systems: multicomput – Distributed data processing – Client/server
Reexamination Certificate
1998-10-14
2001-04-24
Harrell, Robert B. (Department: 2758)
Electrical computers and digital processing systems: multicomput
Distributed data processing
Client/server
Reexamination Certificate
active
06223210
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a system and method for editing broadcast material arranged in a schedule. More particularly, the present invention relates to a system and method of generating and inserting voice-tracks into a broadcast schedule.
2. Background of the Invention
In its beginnings, radio broadcast programming was determined by the on-air personality (often referred to as disk-jockeys). As radio developed as an industry, broadcast programming became more structured and was dictated by the format of the radio station or a particular program. In order to facilitate and maintain the continuity of format based programming, the contents of a particular radio program were provided to the disk-jockeys as a written log. This written log provided a schedule of when particular songs and advertisements were to be played as well as when the disc-jockey was to read other copy and advertisements during the broadcast. While the task of program scheduling and generating the printed logs was eventually computerized, the actual broadcasts were still live or prerecorded in their entirety.
Today, most radio stations use computers to automate a portion, if not their entire broadcast. Many, contemporary on-air broadcasting systems now store the audio tracks (or broadcast audio files) for their broadcasts on hard disks (often referred to as the “audio store”). These tracks consist of discrete recordings of music and advertisements. The order in which the audio tracks are to be played is programmed into a schedule log which may be edited to effect changes in scheduling. The on-air broadcast system will also have a sequencer which plays the audio tracks in the order they are presented in the schedule log. Automated broadcast systems can operate with a disk-jockey present (this mode is often referred to as “live-assist”) or in a completely automated fashion with no human intervention.
When broadcasts are made in a completely automated fashion, it is often desirable to add audio tracks to the log of the disk-jockeys' between song comment and/or the disk-jockey reading advertising copy as if they were present. This allows the broadcast to retain a live sound in a program that is actually prerecorded. Typically, these recordings are referred to as voice-tracks and the process of recording and inserting them into the program is referred to as voice-tracking. While voice-tracks can be recorded outside of any contextual reference other than knowing what tracks it will go between, the quality of the voice-track is improved if the individual recording the voice-track is provided with an audible reference to the preceding and subsequent tracks. The desirability of an audible contextual reference dictates that the voice-tracking system be able to reproduce a portion of the preceding and subsequent tracks. There are two primary types of voice-tracking systems in use in radio stations today, high-bandwidth systems and a low-bandwidth systems.
In the high-bandwidth systems, the voice-tracking system has a high-bandwidth connection to the on-air broadcasting system. Typically this connection is established through a local area network (LAN) with sufficient bandwidth to allow the broadcast audio files to be delivered in real-time to the voice-tracking system to provide audible context support while recording voice-tracks. As broadcast audio files are typically stored in MPEG-2 format, the connection in a high-bandwidth system must be capable of a sustained transfer rate in excess 400 kilobits per second (Kb/s). High-bandwidth systems often have direct access to the program log via direct access to the database governing the log. One of the major limitations of these systems is their high-bandwidth requirements make them unsuitable for lower bandwidth connections or crowded networks which cannot maintain the required transfer rate. These systems often require a dedicated connection to the on-air broadcasting system and employ specialized hardware to implement the voice-tracking system. The distribution of a high-bandwidth system capable of maintaining the requisite transfer rate over a wide area is technically difficult and prohibitively expensive.
This leads to the second type of voice-tracking system, low-bandwidth systems, where the network connection bandwidth is insufficient for real-time delivery of audio tracks to provide context support for voice-tracking. Typically, low-bandwidth systems establish a parallel schedule log and audio store on the machine performing the voice-tracking. Voice-tracks are recorded using the local stored copy of the schedule log and audio tracks and then the recorded voice-tracks are transmitted to the on-air server and integrated into the schedule log. As contemporary low-bandwidth systems store the audio tracks at the broadcast compression rate (typically 256 Kb/s -450 Kb/s or approximately 45 Mb-80 Mb for a three minute song) the resulting storage requirements are quite high and correspondingly expensive. The audio tracks and schedule logs must be copied or distributed on media to the voice-tracking machines on a regular basis to insure that the voice-tracking machine and the on-air machine are working from parallel audio stores and schedule logs. This requires that the relationship between the on-air broadcasting system and the voice-tracking machine be arranged in advance and therefore makes it difficult to set up a new machine as a voice-tracking source. A further limitation of contemporary low bandwidth systems is that since they are working with a copy of the schedule log and audio store, it is difficult to update the system in view of changes in the schedule log and audio store since it was last copied or distributed. The limitations of working with copies of the schedule log are compounded when multiple individuals need to coordinate access to the same time period in the schedule log because they can not see what changes the other persons have made.
A limitation which is inherent with both types of contemporary voice-tracking systems is that they require specialized hardware and specialized knowledge to configure. Yet a further limitation with contemporary voice-tracking systems is that the log schedule stored on the on-air broadcasting system can not be updated until after a log is completed and loaded into the primary audio store. This limitation is especially evident in low bandwidth systems which may require several hours to upload newly recorded voice-tracks over low-bandwidth connections and may have to reconcile several schedule log entries from several sources.
Because of these deficiencies, prior art voice-tracking systems are unable to efficiently provide voice-tracking over low-bandwidth networks without the resorting to the maintenance of a parallel schedule log and audio store. Prior art low-bandwidth systems which depend upon a parallel log are inadequate in that they do not allow for the timely update of schedule log information for either the voice-track users or the schedule log stored on the on-air broadcast system. There is a demand for a low-bandwidth voice-tracking system which does not require maintenance of a parallel log or audio store. There is a further demand for a voice-tracking system which dynamically updates the schedule log maintained by the on-air broadcast system so as to provide all users with an accurate depiction of the current broadcast programming schedule. There is a further demand for a voice-tracking system which may operate on modestly equipped personal computer without the addition of specialized hardware.
SUMMARY OF THE INVENTION
The present invention solves these deficiencies by providing, in accordance with one aspect of the present invention, a system for arranging broadcast material. This system is comprised of a storage device for storing broadcast material. The stored broadcast material comprises a track of a first type of broadcast material and a track of a second type of broadcast material. The system also comprises a log of records associated with
Harrell Robert B.
Kaye, Scholer, Fierman Hays & Handler LLP
Radio Computing Services, Inc.
Silberman Gregory
LandOfFree
System and method for an automated broadcast system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for an automated broadcast system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for an automated broadcast system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2448386