System and method for aircraft and watercraft control and...

Data processing: vehicles – navigation – and relative location – Relative location – Collision avoidance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S213000

Reexamination Certificate

active

06456941

ABSTRACT:

BACKGROUND
1. Field of the Invention
The present invention relates generally to the field of craft control, navigation, and collision prevention, and more particularly to a system and method of relaying craft position information derived by GPS via satellites to other participating craft to prevent collisions and inform the pilot or captain of possible procedures to follow.
2. Description of Related Art
The use of GPS positioning is well known in the art for all types of aircraft, watercraft, and land vehicles. Local systems exist where vehicles broadcast this information to other vehicles or craft in the vicinity (see for example U.S. Pat. No. 5,872,526). However, these systems do not provide location information that is available on a world-wide basis to participating users. Users must be within receiving distance of the cooperating aircraft or watercraft to receive reports.
U.S. Pat. No. 5,995,903 uses real world terrain depiction. GPS position is used to find the correct point in a terrain database.
There are many other prior art systems that use GPS for navigation and many proposals to improve the air traffic control system; however, none of these systems or proposals address the real problem of knowing where each craft in the system is and being able to report that to all other craft and then supplying information to the pilot or captain as to what to do in a certain situation.
What is badly needed is a system and method where position, course, speed, and altitude information (for ships, position, speed, and course) can be transmitted to satellites specifically designed to control such traffic on a world-wide or nation-wide basis. These satellites should communicate with each other so that all satellites can rebroadcast all available information. This way participating craft are always aware of the location of all other craft known about by the system. This system should inform the pilot or captain of collision hazards and provide information as to what to do in a given situation.
SUMMARY OF THE INVENTION
The POSTMAN/D (Positioning by Orbital Satellite Transmitting Marine and Aviation Navigational Data) system, that represents the present invention, is an integrated cockpit/bridge communications system that takes data known to each craft and provides it to other participating craft. By craft, I mean aircraft and watercraft of all types, missiles, and also optionally land vehicles.
The system of the present invention supplies a visual display of all craft in the area. Each participating craft computes its position in known ways via GPS/DGPS, or other possible ways such as Loran C, VOR, or any other means or method of determining absolute position. The preferred method is the use of GPS or DGPS known in the art. Each craft also possesses information on its own speed, heading, absolute altitude, and height above the ground for aircraft, as well as its attitude in terms of pitch, roll, and yaw. Generally three GPS satellites are needed for an a 3-dimensional fix.
Each participating craft can then uplink transmit this information via microwave link to at least one of a special constellation of POSTMAN/D satellites dedicated to this system. These satellites, located strategically around the world, communicate with each other via microwave or other communications means. In this manner, they share information concerning all participating craft.
Each participating craft also receives a downlink transmission of a broadcast nature from all POSTMAN/D satellites in its view. It is thus possible for any participating craft to have detailed, real time information of any other craft actively in the system.
Each craft is identified to the system by a unique serial number or hull number. This number can be programmed into the system at installation time and cannot be changed. Thus, whenever the on-board system is transmitting coordinate information, it is always using the correct, unchangeable hull or serial number of the craft. By coordinate information, I mean position, speed, heading, altitude, and height above the terrain. Thus, it is difficult, if not impossible, to fool the system into misidentification of any craft.
Thus, it is an object of the present invention to provide a system where each participating craft reports its position as determined from GPS, and its own parameters such as heading and speed to a system of repeaters which are satellites or other control points. The satellites are in communication with each other so information available at one satellite is available at every satellite. Each participating craft in the system receives information on location, heading, and speed of other craft. It can then display the status of other craft on a display; it can warn of impending collisions; and it can even be programmed to avoid collisions by supplying information to a craft's autopilot.
Software in an on-board computer system correlates and classifies all data coming in from the POSTMAN/D satellites as to coordinates of other craft as well as coordinates for the that craft. Computations can be easily made to determine if there is any collision danger. A zone of protection can be computed around the craft based on speed and maneuverability. The system can provide the pilot or captain with instructions on what to do to avoid any potential collision or in any other situation. The system can optionally be programmed to take control of the craft to perform emergency maneuvers to avoid collision by sending data to the craft's autopilot.
The basic on-board system can consist of a GPS/DGPS receiver, a microwave transceiver for communication with the POSTMAN/D satellites, an UHF transceiver for backup or local communication, a gyro stabilized antenna with a signal seeking device to lock on the best POSTMAN/D satellite, a display panel for the cockpit or bridge, and various interface equipment between the components. In addition, the basic system has inputs from the craft's own instrument systems as to attitude roll and pitch (or heading in the case of a ship). This allows proper positioning of Icons on a display in the proper axis or real time flight attitude. The display software can supply simulated terrain or scenery similar to that of a flight simulator.
Once the system is activated, the stabilized antenna seeks and locks on the strongest available POSTMAN/D satellite. The system can be programmed to search for, and switch to, a stronger signal if one becomes available. The system begins immediately to transmit the craft's ID number as well as absolute position in longitude and latitude (or other local coordinates), heading, speed, and altitude. The system also begins immediately to receive data from the POSTMAN/D system of satellites concerning other participating craft anywhere. Selection can be made by ranging to limit the incoming information to craft in a reasonable vicinity. Because information is available about all participating craft, the display can be centered or located on any craft in the system, not just the craft where the display is located. When the display is located on another craft, it shows all information relative to that craft.
Data to and from the POSTMAN/D satellites is generally in a data packet module format using the known techniques of digital data transmission. Each packet or module can contain error control bits and/or error correction capabilities. Any received packet or module that cannot be read for any reason can be rerequested. Data from the satellites is generally sent out in a broadcast mode to all craft in receiving range. Data to the satellite from any craft can be sent in a packet/collision communications mode known in the art, or by any other communications mode that allows multiple competing stations to communicate including time division, frequency division and code division multiplex.
The system can also be used to control or guide aircraft on the ground to guide them to proper destinations on an airport and to prevent ground collisions (either between aircraft or aircraft and vehicles). In this case, airport ve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for aircraft and watercraft control and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for aircraft and watercraft control and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for aircraft and watercraft control and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2908416

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.