Plastic and nonmetallic article shaping or treating: processes – Direct application of fluid pressure differential to... – Starting material is nonhollow planar finite length preform...
Reexamination Certificate
2002-03-08
2004-08-03
Mackey, James P. (Department: 1722)
Plastic and nonmetallic article shaping or treating: processes
Direct application of fluid pressure differential to...
Starting material is nonhollow planar finite length preform...
C026S00200E, C028S160000, C264S555000, C425S385000
Reexamination Certificate
active
06770240
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to systems and methods for embossing a surface of an embossable fabric with a stream of air, and embossed flocked fabrics made thereby.
BACKGROUND OF THE INVENTION
In manufacturing flocked fabric it is conventional to deposit a layer of flock on an adhesive coated substrate and to emboss the surface of the flocked fabric during this process with selected designs. Conventionally, the embossing process may be achieved by one of several processes using specialized equipment for such purposes. Among these embossing processes is air embossing. In the air embossing process a substrate is coated with an adhesive. While the adhesive is still wet it is covered with a layer of flock fibers forming the flocked layer. The adhesive coated substrate with the flocked fibers is then carried beneath a stencil while the adhesive is not yet set. The stencil under which the assembly moves typically comprises an elongated cylinder having perforations arranged in a desired pattern to be formed in the flocked surface. This embossing stencil typically is rotated at the same speed as the flocked layer moves beneath it. Air introduced within this cylindrical stencil is directed downwardly through the perforations forming the pattern onto the upper surface of the flocked layer. By choosing a particular arrangement of perforations in the screen, and by the selective application of air flow through the perforations, air jets are projected downwardly from the stencil onto the surface of the flocked fabric. Since the flocked fabric has not yet set in the adhesive, the stream of air changes the angle of or substantially flattens the flock fibers forming the flock in selected areas, thus forming a pattern as the stencil rotates and the flocked fabric moves.
A variety of prior art systems are available for performing air embossing of flocked fabrics. Many such systems are generally satisfactory for embossing designs onto an embossable surface of the fabric that do not require a significant level of fine detail. However, typical prior art systems suffer from a variety of shortcoming which limit their utility for producing finely detailed patterns, and which result in embossed pile fabrics that include embossed regions having undesirable artifacts and visually unappealing surface features. For example, air embossed pile fabrics produced with conventional air embossing equipment are typically not able to produce embossed features having a characteristic size that is very small, thus such equipment is not able to give the embossed fabric an appearance with a fine, detailed surface structure. In addition, typical prior art air embossing systems are not able to direct air towards the embossable surface of the fabric at a controlled, desirable angle (e.g. essentially perpendicular to the fabric surface), and, thus, they tend to produce embossed features having a blurred or imprecise transition region between the embossed features and the unembossed regions of the surface, which results in an associated lack of crispness and definition to the overall appearance of the embossed fabric.
In addition, typical prior art air embossing systems also tend to produce embossed fabrics having embossed features distributed across the width of the fabric that are not uniform in appearance across the width of the fabric. Also, typical prior art air embossing systems have a tendency to direct air towards the surface of the fabric in a direction diagonal to the fabric surface resulting in an embossed surface wherein the pile fibers have an overall directional lay with respect to the substrate, thus creating a distorted, unattractive appearance in the embossed surface, which appearance does not accurately reflect the pattern provided in the stencil used for embossing.
The present invention is directed to improved air embossing systems and methods and improved embossed fabrics produced using the systems and methods. The invention provides a variety of air embossing systems utilizing improved air lances for directing air onto and through a patterned stencil of the system. The improved air lances and embossing systems provided by the invention are able, in many embodiments, to solve many of the above-mentioned short comings of prior art air embossing systems and to produce embossed fabrics having an unprecedented level of fine detail, crisp transition between unembossed and embossed regions, and uniformity across the width of the embossed fabric.
SUMMARY OF THE INVENTION
The present invention provides, in some embodiments, improved air embossing systems, improved air lances, and improved methods of air embossing fabrics, which are able to produce an unprecedented level of fine detail, crisp transition between unembossed and embossed regions, and a high degree of uniformity across the width of an embossed fabric, when compared to the performance of typical, conventional air embossing systems, air lances, and embossing methods. The air embossing systems provided by the invention, in some embodiments, utilize air lances for directing a stream of air onto the embossable surface of a fabric that have at least one nozzle having a characteristic orifice dimension substantially less than that of conventional air lance nozzles. The disclosed air embossing systems can also include air lances having nozzles positioned in close proximity to the embossable surface of a fabric being embossed, substantially closer than is typical for air lances employed in conventional air embossing systems. Air lances provided according to the invention can also include one or more nozzles having a characteristic orifice dimension that is substantially less than a characteristic length of the nozzles. Certain air lances provided according to the invention can also include one or more nozzles in the shape of an elongated slit oriented, with respect to the air lance, so as to be positioned across essentially the entire width of a fabric being embossed with the air lance. The invention also provides air lances for use in embossing fabrics that can include a nozzle-forming component that is separable from the main body of the air lance and that enables the nozzle(s) of the air lance to be positioned within close proximity to the fabric, when the air lance is in operation, and that also can act to redirect air flowing within the air lance such that it is emitted from the nozzle(s) so that a substantial fraction of the air stream is directed essentially perpendicular to the surface of the fabric being embossed. Yet other air lances disclosed include therein one or more baffles or air redirecting elements, which serve to deflect air flowing within the air lance so that it passes through the nozzle(s) and is directed onto the embossable surface of the fabric at an angle that is substantially greater, with respect to the longitudinal axis of the air lance, than the angle of an air stream emitted from a nozzle of an essentially equivalent air lance, except excluding the air redirecting element or baffle. Some of the air lances described according to the invention can include a combination of several or all of the above described features.
In one embodiment, a system for air embossing a surface of an embossable fabric is disclosed. The system comprises a stencil having a first surface and a second, fabric-facing surface that is positionable adjacent and in spaced proximity to the embossable surface of the fabric during air embossing. The system further comprises an air lance comprising a main body portion and including at least one nozzle. The nozzle is constructed and positioned to direct a stream of air through at least one opening in the stencil and onto the embossable surface. The air lance is secured within the system to maintain the nozzle in a fixed, predetermined position relative to the first surface of the stencil during operation. The air lance is positioned such that the nozzle is positioned so that at least a portion thereof, which is closest to the stencil, is separated from the first surface of the stencil by a
Laird William
Murphy George
Mackey James P.
Microfibres, Inc.
Wolf Greenfield & Sacks P.C.
LandOfFree
System and method for air embossing fabrics utilizing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and method for air embossing fabrics utilizing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for air embossing fabrics utilizing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328770