System and method for achieving slot synchronization in a...

Multiplex communications – Communication over free space – Combining or distributing information via code word channels...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S335000, C370S350000, C370S441000, C370S503000, C370S515000, C375S143000, C375S150000, C375S152000, C375S343000, C375S363000, C375S366000, C455S039000, C455S073000, C455S130000

Reexamination Certificate

active

06404758

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the synchronization process in a Wideband CDMA system, and more particularly, to achieving slot synchronization in a Wideband CDMA system in the presence of large initial frequency errors using a matched filter having a reduced coherence window and a circular sliding integrator.
BACKGROUND OF THE INVENTION
In a cellular communications system using Wideband code division multiple access (W-CDMA) protocols, a first search code (FSC) of 256 chips long is transmitted in every time slot. By synchronizing to the FSC of the received signal, a mobile station can identify the time slot boundary of the downlink signals. Typically, a FSC matched filter is used to synchronize to the FSC. FSC synchronization is done by identifying the peaks of the FSC matched filter output. However, because the accuracy of an oscillator used in a mobile station is typically in the range of 2.5 to 15 parts per million (ppm), the FSC synchronization must often be performed in the presence of large frequency errors.
The working assumption for the oscillator accuracy is 10 ppm. Since the operating frequency for current W-CDMA systems, for example, the IMT-2000 system, is 1.9-2.0 GHz, using a 10 ppm oscillator results in initial frequency errors of up to 20 KHz. As
1
FSC symbol is of duration 0.0625 milliseconds, a 20 KHz frequency error causes up to a 450° phase rotation per periodic channel symbol, thereby severely degrading performance of the FSC matched filter. Current matched filters are able to tolerate frequency errors of up to 5 KHz before the phase rotation per chip due to the frequency error degrades performance of the matched filter. Thus, a mobile station needs to hypothesize oscillator frequency errors and adjust its oscillator frequency according to each hypothesis such that the actual frequency error for the best hypothesis is less than 5 KHz. This requires the mobile station to make up to 4 frequency error hypotheses before finding the slot boundary, where each frequency hypothesis is verified by checking the CRC code, thereby greatly increasing power consumption and synchronization time.
Because the same FSC is used by all of the cells and sectors, and occurs in the same position of every time slot, the FSC is used to find the location of slot boundaries. An accumulator accumulates the output of the FSC matched filter over a specified number of time slots, thereby overcoming noise in the received signal as the energy peaks due to the FSC accumulate faster than the energy peaks due to noise. However, due to the inaccuracy of the oscillator and multipath interference, the position where the peaks occur changes gradually, resulting in the energy peaks accumulated by the accumulator being dispersed over multiple time indices.
Additionally, noise in the received signal could result in energy peaks in the FSC matched filter output greater than those due to the FSC, even after accumulation. This increases the probability that the wrong time index will be sent to the next stage of synchronization, thereby resulting in misidentification of the time slot boundary.
The invention is directed to overcoming one or more of the problems discussed above in a novel and simple manner.
SUMMARY OF THE INVENTION
In accordance with the invention, a receiver uses a first search code (FSC) matched filter having a reduced coherence window to reduce a phase rotation of a received signal resulting from an oscillator error. Additionally, the receiver uses a circular sliding integrator to combine energy dispersed during the accumulation process as a result of the oscillator error and multipath interference. Further, a sorter determines a predefined number of largest energy peaks from an output of the circular sliding integrator, eliminating those energy peaks resulting from the circular sliding integrator, thereby increasing the probability of a time index representing a time slot boundary being sent to a next stage of the synchronization process.
Broadly, there is disclosed herein a receiver for improving slot synchronization in a Wideband code division multiple access (W-CDMA) communications system by overcoming oscillator error and multipath interference, the receiver having a matched filter for receiving a signal including a FSC, where the matched filter utilizes a reduced coherence window for decreasing the degradation of a symbol due to a carrier phase rotation resulting from the oscillator error. The receiver further includes an accumulator coupled to the matched filter for accumulating an output of the matched filter over an accumulation window of time slots. A circular sliding integrator is coupled to the accumulator for combining dispersed energy from an output of the accumulator over an integration window. Additionally, a sorter is coupled to the circular sliding integrator for determining a specified number of candidate time indices for a time slot boundary using an output of the circular sliding integrator.
It is a feature of the invention that the matched filter is a FSC matched filter.
It is another feature of the invention that the size of the coherence window is determined using a desired phase rotation within the coherence window, a chip duration and an actual frequency error due to the oscillator.
It is another feature of the invention that the matched filter includes a shift register having a number of elements less than a number of chips forming the symbol, for holding a portion of the received signal. The matched filter further includes a multiplying-integrating processing circuit coupled to the shift register for multiplying the portion of the received signal in the shift register with a portion of the FSC, and integrating the products. Further, the matched filter includes a phase elimination circuit coupled to the multiplying-integrating processing circuit for removing phase information from a result produced by the multiplying-integrating processing circuit.
It is yet another feature of the invention that the circular sliding integrator is a first integrator, and the receiver includes a shift register having a number of elements equal to a number of chips comprising the symbol for receiving the received signal. The receiver further includes a buffer coupled to the shift register for receiving a portion of the received signal from the shift register, a multiplying-integrating processing circuit coupled to the buffer for multiplying the portion of the received signal in the buffer with a portion of the FSC, and integrating the products. The receiver further includes a phase elimination circuit coupled to the multiplying-integrating processing circuit for removing phase information from a result produced by the multiplying-integrating processing circuit, a storage device coupled to the phase elimination circuit for storing a result produced by the phase elimination circuit, and a second integrator coupled to the storage device for integrating the stored results.
It is a further feature of the invention that the size of the accumulation window is determined using a signal-to-noise ratio.
It is still another feature of the invention that the size of the integration window is determined using the oscillator error, a chip duration and size of the accumulation window.
There is disclosed in accordance with another aspect of the invention a receiver for improving initial slot synchronization in a W-CDMA communications system by overcoming oscillator error. The receiver includes a matched filter for receiving a signal including a FSC, the matched filter utilizing a reduced coherence window for decreasing the degradation of a symbol due to a carrier phase rotation resulting from the oscillator error. An accumulator is coupled to the matched filter for accumulating an output of the matched filter over an accumulation of time slots, and an integrator is coupled to the accumulator for combining dispersed energy from an output of the accumulator over an integration window.
It is a feature of the invention that the matched filter is a FSC matched filter.
It is a fe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for achieving slot synchronization in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for achieving slot synchronization in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for achieving slot synchronization in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.