Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent structure
Reexamination Certificate
2000-04-28
2003-07-15
Milano, Michael J. (Department: 3731)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Arterial prosthesis
Stent structure
C623S001230
Reexamination Certificate
active
06592616
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to angioplasty procedures, and more particularly, to a system and device for preventing arterial plaque from dislodging from the arterial wall during procedures such as, for example, percutaneous transluminal coronary angioplasty (PTCA) or percutaneous transluminal angioplasty (PTA), especially carotid PTA, and entering into the bloodstream where the embolic debris can occlude the flow of oxygenated blood to vital organs, such as the brain, which can cause devastating consequences to the patient. The present invention also relates to methods for using such a system and device.
In typical carotid PTA procedures, a guiding catheter or sheath is percutaneously introduced into the cardiovascular system of a patient through the femoral arteries and advanced through the vasculature until the distal end of the guiding catheter is in the common carotid artery. A guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guidewire sliding within the dilatation catheter. The guidewire is first advanced out of the guiding catheter into the patient's carotid vasculature and is directed across the arterial lesion. The dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the arterial lesion. Once in position across the lesion, the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressure to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery. The balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and the blood flow resumed through the dilated artery. As should be appreciated by those skilled in the art, while the above-described procedure is typical, it is not the only method used in angioplasty.
In angioplasty procedures of the kind referenced above, abrupt reclosure may occur or restenosis of the artery may develop over time, which may require another angioplasty procedure, a surgical bypass operation, or some other method of repairing or strengthening the area. To reduce the likelihood of the occurrence of abrupt reclosure and to strengthen the area, a physician can implant an intravascular prosthesis for maintaining vascular patency, commonly known as a stent, inside the artery across the lesion. Stents are usually delivered in a compressed condition to the target location and then are deployed into an expanded condition to support the vessel and help maintain it in an open position. The stent is usually crimped tightly onto a delivery catheter and transported in its delivery diameter through the patient's vasculature. The stent is expandable upon application of a controlled force, often through the inflation of the balloon portion of the delivery catheter, which expands the compressed stent to a larger diameter to be left in place within the artery at the target location. The stent also may be of the self-expanding type formed from, for example, shape memory metals or super-elastic nickel-titanum (NiTi) alloys, which will automatically expand from a compressed state when the stent is advanced out of the distal end of the delivery catheter into the body lumen.
The above non-surgical interventional procedures, when successful, avoid the necessity for major surgical operations. However, a danger which is always present during these procedures is the potential for particles of the atherosclerotic plaque, which can be extremely friable, breaking away from the arterial wall. For example, during deployment of a stent, the metal struts of the stent can possibly cut into the stenosis and shear off pieces of plaque which become embolic debris that will travel downstream and lodge somewhere in the patient's vascular system. Pieces of plaque material can sometimes dislodge from the stenosis during a balloon angioplasty procedure and become released into the bloodstream. When any of the above-described procedures are performed in the carotid arteries, the release of emboli into the circulatory system can be extremely dangerous and sometimes fatal to the patient. Debris that is carried by the bloodstream to distal vessels of the brain can cause these cerebral vessels to occlude, resulting in a stroke, and in some cases, death. Therefore, although cerebral percutaneous transluminal angioplasty has been performed in the past, the number of procedures performed has been limited due to the justifiable fear of causing an embolic stroke should embolic debris enter the bloodstream and block vital downstream blood passages.
Medical devices have been developed to attempt to deal with the problem created when debris or fragments enter the circulatory system following treatment utilizing the above-identified procedures. Some techniques which have had limited success include the placement of a filter or trap downstream from the treatment site to capture embolic debris before it reaches the smaller blood vessels downstream. However, there have been problems associated with filtering systems, particularly during the expansion and collapsing of the filter within the body vessel. If the filtering device does not have a suitable mechanism for closing the filter, there is a possibility that trapped embolic debris can backflow through the open end of the filter and enter the blood-stream as the filtering system is being collapsed for removal from the patient. In such a case, the act of collapsing the filter device may actually squeeze trapped embolic material through the opening of the filter. In other instances, the rate of blood percolating through the filtering material may be slower than the normal blood flow which can either cause the filtering material to tear or cause the filter to dislodge from the deployed position due to the build up of fluid pressure behind the filter. Moreover, should the filter become clogged with debris, there is a possibility that blood circulation past the clogged filter will be insufficient for the downstream vessels. If a filter should become clogged when in use in the carotid arteries, blood flow could be diminished to the vessels leading to the brain. While the brain may be capable of functioning for a short period of time without sufficient blood flow, blood stoppage of more than thirty to forty seconds could cause the patient to experience a seizure. If the physician administering the procedure is unaware that the filtering device is clogged and that there is little or no blood flowing to the brain, the injury to the patient can be as devastating as if an emboli itself had caused blockage of the cerebral arteries.
In light of the above, it becomes apparent that there remains a need for a device or method that will prevent friable plaque from breaking away from arterial walls during intravascular procedures and forming emboli in the bloodstream, which is easy and safe to deploy, and that may be implanted for extended periods of time with minimal adverse impact or immunological response to the patient. Such a system or device would be advantageous if it prevents the need to catch and remove embolic material in the bloodstream by preventing such an occurrence in the first place. The inventions disclosed herein satisfy these and other needs.
SUMMARY OF THE INVENTION
The present invention provides a system and device for trapping embolic debris which may be created during the performance of a therapeutic interventional procedure, such as a balloon angioplasty or stenting procedure, to prevent the emboli from entering into the bloodstream and lodging and blocking blood vessels downstream from the interventional site. The present invention is particularly useful while performing an interventional procedure in critical arteries, such as the carotid arteries, in which downstream blood vessels can become blocked with embolic debris, including the main b
Muller Paul F.
Patel Udayan G.
Stack Richard S.
Advanced Cardiovascular Systems Inc.
Fulwider Patton Lee & Utecht LLP
Ho (Jackie ) Tan-Uyen T.
Milano Michael J.
LandOfFree
System and device for minimizing embolic risk during an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with System and device for minimizing embolic risk during an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and device for minimizing embolic risk during an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3109396