System and assembly for sanitizing swimming pool water

Liquid purification or separation – With time control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S167150, C210S192000, C210S206000, C210S259000, C210S416200, C210S748080

Reexamination Certificate

active

06827847

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to a system and assembly for purifying/sanitizing the water of a swimming pool utilizing a chlorine generator and a ionization mineral filter collectively structured as a replaceable, unitary assembly.
2. Description of the Related Art
It is universally recognized that the proper maintenance of swimming pools, regardless of their size or location, is a continuous procedure. In addition to the physical cleaning of both the submerged and exposed surfaces of the swimming pool, it is necessary to maintain water purity in order to ensure that the use of the swimming pool does not present health hazards. Accordingly, it is important to have a reliable maintenance system for purifying water within the swimming pool. As with most maintenance procedures both cost and reliability are major concerns. In many situations involving conventional systems and apparatus for treating the swimming pool water, the water is purified to remove microorganisms, such as bacteria or algae. In addition, harmful metal ions, such as mercury and lead are also removed.
Typically, conventional water maintenance and purifying systems have been known to include mineral filters having a variety of structural configurations, which are specifically directed to remove the aforementioned potential a harmful metal ions. However, the control of bacterial growth in the swimming pool water has presented more complex problems normally addressed by the adding of chemicals such as chlorine. Water treatment also involves the concurrent determination and regulation of the ph level of the water once such purifying chemicals have been added.
While large public or private swimming pools may include stored chlorine gas systems which allow the controlled addition of gaseous chlorine into the pool water, more common residential size swimming pools do not justify the expensive installation and relatively complex operation of such systems. Accordingly, smaller swimming pools typically rely on the manual addition of purifying chemicals, primarily chlorine compounds, in liquid, tablet or granulated particle form. Normally, the chlorine chemical additives are supplied to the swimming pool by periodically adding a fresh supply of the purifying chemical directly to the pool water. As such, a wide variation in the concentration level of the chlorine, once dissolved in the pool water, would develop. Precise regulation of the chlorine level using this method is difficult and often results in equally imprecise or inconsistent control of bacterial growth.
Further, dependent upon the weather, amount of pool use and a variety of other factors, the quantity and frequency of chlorine addition varies. Therefore, while the rate of growth of bacteria and like organic contaminants is generally restricted, the person maintaining the pool is required to monitor the chlorine level at frequent intervals in order to detect when the addition of chlorine was required.
In addition, it is recognized in the pool maintenance industry that the aforementioned mineral filters would gradually become less effective, over a period of time, in removing the contaminant metal ions. While such filters also have the effect of facilitating the purification of the swimming pool water in terms of controlling bacterial growth, it is recognized that more and more chlorine, or other purifying chemical compounds need to be added as the effectiveness of the ionization mineral filters become less and less effective.
One recognized solution to the above problems, was the development and use of chlorine generators. Most commonly, chlorine generators are present in the form of electrolytic chlorinators which operate by electrolyzing a sodium chloride solution through the provision of both an anode chamber and a cathode chamber. The construction of such electrolytic chlorinators typically involves the releasing of chlorine gas by electrolyzing a sodium chloride solution within the anode chamber. In this recognized procedure, positively charged'sodium ions were attracted to the negatively charged cathode thereby serving to liberate the chlorine gas within the anode chamber. The chlorine gas was then released into the swimming pool water in a variety of different ways. Further, in the conventional structural configuration of known electrolytic chlorine generators the anode and cathode chambers are separated from one another by an ion-permeable barrier. This barrier prevents the chlorine gas, liberated within the anode chamber, from mixing with the hydrogen gas, liberated within the cathode chamber. As such brine in the form of the sodium chloride solution was separated from the resulting sodium hydroxide, which is caustic and forms within the cathode chamber.
Regardless of the specific structure and design of known electrolytic chlorine generators, they are frequently considered to be a permanent or at least semi-permanent part of the circulation system associated with the vast majority of swimming pools with which they are used. Similarly, the aforementioned ionization mineral filters are constructed and installed as distinct and separate units, frequently located at the water supply inlet to the swimming pool filtration system or at other convenient locations. As a result, there is no cooperative effort between the respective operations of the mineral filter and the chlorine generator. As a result of such independent operation, the chlorine generator would frequently be required to produce more chlorine as the mineral filter became less effective in order to adequately control the growth of organic contaminants, of the type set forth above.
In addition to the permanently installed nature of most conventional chlorine generators, there existed the problem of providing a brine or sodium chloride solution of proper concentration to the anode side of the chlorine generator in order to produce an adequate amount of chlorine gas. In an attempt to overcome such problems a variety of different structures were designed which were specifically intended to create a properly concentrated sodium chloride solution to the electrolytic plates of the generator. Also such prior art attempts involved the addition of a predetermined quantity of undissolved sodium chloride, such as in the form of rock salt, directly to the interior of the chlorine generator so as to create a properly concentrated brine solution which was eventually fed to the anode chamber of the chlorine generator.
Other prior art attempts involve the provision of a separate “briner”, chamber or device which accomplished the continuous dissolving of sodium chloride in order to deliver a brine, of proper concentration, to the anode chamber of the chlorine generator. While such attempts to provide a sodium chloride solution may be considered to be at least minimally operable, their operation resulted in a variety of different problems associated with the collection or built-up of salt deposits on certain portions of the electrolytic generator thereby harmfully affecting its performance.
Therefore, there is a recognized need in the swimming pool servicing industry for an effective and efficient system and associated structure for simplifying purification/sanitization of swimming pool water by effectively controlling both the mineral and organic contaminants found in swimming pool water. Such an improved system and assembly should incorporate the recognized benefits of both an ionization filter and electrolytic chlorine generator apparatus. In addition, these two complimentary water treating systems could be made to be extremely cost effective to the extent of allowing a unitized assembly including both of the devices to be periodically replaceable, depending upon the usage, weather, environment, etc. associated with the swimming pool. Further, once installed a combined electrolytic chlorine generator and ionization mineral filter would be cooperatively structured to include a substantially equal operable life. Removal and replacement of a water treatment

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and assembly for sanitizing swimming pool water does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and assembly for sanitizing swimming pool water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and assembly for sanitizing swimming pool water will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285962

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.