System and apparatus having low profile collapsible tines

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S128000

Reexamination Certificate

active

06240322

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to medical devices. More particularly, it pertains to insertable medical instruments having low profile, collapsible tines.
BACKGROUND OF THE INVENTION
Electrodes have been implanted in the body for electrical cardioversion or pacing of the heart. More specifically, electrodes implanted in or about the heart have been used to reverse (i.e., defibrillate or cardiovert) certain life threatening arrhythmias, or to stimulate contraction (pacing) of the heart, where electrical energy is applied to the heart via the electrodes to return the heart to normal rhythm.
Cardiac pacing may be performed by the transvenous method or by electrodes implanted directly onto the epicardium. Transvenous pacing may be temporary or permanent. In temporary transvenous pacing an electrode catheter is introduced into a peripheral vein and fluoroscopically positioned against the endocardium. Traditional permanent transvenous pacing is performed under sterile surgical conditions where an electrode is positioned in the right ventricle or atrium through a subclavian vein, and the proximal terminals are attached to a pulse generator which is implanted subcutaneously. However, for certain conditions, for example, congestive heart failure or to improve hemodynamics, it can be more beneficial to couple the electrode with the left ventricle or the left atrium. This placement can provide stimulation of the left side only, or when used with a right sided lead can be used for biventricular pacing.
Lead placement within the left ventricle or left atrium, however, has been considered as involving more risk than lead placement within the right ventricle or right atrium since the left chambers involve pumping at higher pressures. In addition, the course of blood from the left ventricle to the body involves systemic circulation, where blood flows to several organs other than the lungs, such as the brain. Potential complications with blood clots which can be induced by the presence of the lead preclude lead implantation within left chambers of the heart. One approach to resolve this issue is to place the lead outside of the heart proximate the left ventricle or the left atrium. Traditionally, To attach a lead epicardially, a thoracotomy is performed where the thorax is opened to obtain access to the heart. This procedure involves painfuil and expensive surgery for the patient.
Accordingly, what is needed is a medical device for coupling with a portion of the heart. What is further needed is a lead which can be implanted within veins adjacent to the heart. What is also needed is a lead which minimizes drag during lead placement.
SUMMARY OF THE INVENTION
A medical device is provided which is adapted to be placed intravenously with minimal drag during placement of the medical device. The medical device includes retaining features which collapse during insertion of the medical device, and prevent inadvertent removal of the medical device from the body. In one embodiment, the medical device includes a lead having a distal tip electrode which is adapted for implantation about the heart. The electrode includes at least one tine, which, in one embodiment, is at least partially hollow. In another embodiment, the at least one tine is formed of a foam material. In one embodiment, the tine is tapered from a free end to a coupling end. Alternatively, the tine has a cylindrical structure. The tine has a thin-walled structure, which in one configuration comprises a semi-circular cross-section. The semi-circular cross-section can be disposed with the open section faces towards or away from the body of the electrode, depending on the embodiment.
Each tine is coupled with the medical device at a coupling end, where a free end is adapted to engage with structure encompassing the medical device after implantation, should a removing force be inadvertently applied to the device. The tine is coupled to the device in a number of manners, such as molding the tine to the device, bonding the tine to the device, or a mechanical attachment such as a compression fit or a snap fit. The tine can also be coupled with the lead within a recess to allow for further collapsibility. The tine is, in one embodiment, formed from pliable material such as silicone. Alternatively, a bioresorbable material, a foam, or other pliable polymer can be used to form the tine. In another embodiment, other materials or shapes which allow for collapsibility could also be used.
In another configuration, a distal tip electrode is provided which is adapted for implantation about the heart. The electrode includes an electrode assembly which has one or more tines. The tine radially extends from a coupling end which is coupled with a lead body of the electrode assembly. The tine radially extends from the coupling end to a free end.
In yet another embodiment, a system is provided for monitoring or stimulating cardiac activity. The system includes a pulse sensor and signal generator coupled with a lead. The lead extends from a proximal end to a distal end, where the proximal end is operatively coupled with the pulse sensor and signal generator. An electrode assembly is coupled with the lead, which includes an electrode and at least one hollow tine. The tine is adapted to collapse upon insertion into an encompassing structure, such as a vein or introducer.
Collapsible tines aid in providing an implantable medical device which is atraumatic to the vessel walls, and also provides resistance to inadvertent dislodgement of the medical device from the patient. The collapsible feature of the medical device also allows for a smaller introducer to be used for a patient which provides for a less traumatic implant for the patient. In addition, deployment of the medical device is improved since the amount of drag is reduced as the lead is passed through a vein. This allows for flexibility in insertion of a medical device, such as a lead through restricting structures.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.


REFERENCES:
patent: 4564023 (1986-01-01), Hess
patent: 4945922 (1990-08-01), van Krieken
patent: 4957118 (1990-09-01), Erlebacher
patent: 5282838 (1994-02-01), Hauser et al.
patent: 5545206 (1996-08-01), Carson
patent: 5554178 (1996-09-01), Dahl et al.
patent: 5578068 (1996-11-01), Lasko et al.
patent: 5868741 (1999-02-01), Chia et al.
patent: 5931864 (1999-08-01), Chastain et al.
patent: 5957966 (1999-09-01), Schroeppel et al.
patent: 6006139 (1999-12-01), Kruse et al.
patent: 0057877 (1982-08-01), None
patent: 0546414 (1991-12-01), None
patent: 0779080 (1995-12-01), None
patent: 2067411 (1980-01-01), None
patent: 2099307 (1982-12-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and apparatus having low profile collapsible tines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and apparatus having low profile collapsible tines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and apparatus having low profile collapsible tines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.