System and apparatus for providing telephone communication...

Telephonic communications – Emergency or alarm communications – Central office responsive to emergency call or alarm

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S049000, C379S037000, C379S265010

Reexamination Certificate

active

06744859

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to telecommunication systems, and especially to abbreviated or special number telecommunication systems, such as abbreviated number emergency services notification and dispatch operation telecommunication systems. One example of such an abbreviated or special number is the emergency services notification and dispatch system commonly known as the 9-1-1 system in the United States.
Emergency services notification and dispatch operations, commonly known in the United States as 9-1-1 Service, has its genesis in a 1957 recommendation by the National Association of Fire Chiefs for a single number for reporting fires. In 1967, the President's Commission on Law Enforcement and Administration of Justice recommended that a single number should be established nationwide for reporting emergency situations. The use of different telephone numbers for different types of emergencies was considered to be contrary to the purpose of using a single, universal emergency notification number. Other federal agencies and several government officials supported and encouraged the recommendation. The President's Commission on Civil Disorders charged the Federal Communications Commission (FCC) with finding a solution. In November 1967, the FCC met with the American Telephone and Telegraph Company (AT&T) to establish a universal number that could be implemented quickly. In 1968, AT&T announced the establishment of the number 9-1-1 as the emergency notification number nationwide. The 9-1-1 code was chosen because it was considered to be brief, easily remembered, and could be dialed quickly. It was also a unique number that had never been employed as an office code, area code or service code, and it met long range numbering plans and switching configurations of the telecommunication industry. The 9-1-1 number met the requirements of all parties, in government and in private industry.
Congress supported the AT&T plan and passed legislation allowing use of only the numbers 9-1-1 when creating an emergency calling service. The 9-1-1 number was thus established as a nationwide standard emergency number. The first 9-1-1 call in the United States was completed by Senator Rankin Fite in Haleyville, Ala., using the Alabama Telephone Company. Nome, Ak. Implemented 9-1-1 service in February 1968.
In 1973, The White House Office of Telecommunication issued a policy statement recognizing the benefits of 9-1-1, encouraging the nationwide adoption of 9-1-1, and establishing a Federal Information Center to assist governmental units in planning and implementing 9-1-1 service.
A basic 9-1-1 System provides for programming with special 9-1-1 software a telephone company end office (also known as a “central office” or a “Class 5 office”) to route all 9-1-1 calls to a single destination. The single destination was termed a Public Safety Answering Point (PSAP). In such an arrangement, all telephones served by the central office would have their 9-1-1 calls completed to the PSAP. However, the areas served by respective telephone company central offices do not line up with the political jurisdictions that determine the boundaries for which PSAP may be responsible. That is, a municipal fire department or police department may geographically include an area outside the area served by the central office, a condition known as underlap. Likewise, the municipal fire or police department may encompass an area of responsibility that is less expansive than the area served by the central office, a situation known as overlap. Further, the original basic 9-1-1 systems did not provide any identification of the caller; the PSAP human operator had to obtain such information verbally over the line after the call was connected. The major shortcoming of the basic 9-1-1 systems was that they could not support interconnection to other telecommunication providers such as independent telephone service companies, alternate local exchange carriers (ALECs), or wireless carriers. The “basic” nature of the basic 9-1-1 system also indicates that the system does not have Automatic Location Identification (ALI) capability or Automatic Number Identification (ANI) capability with a call back capability.
Similar abbreviated number systems are in place for handling emergency service calls in countries other than the United States. The abbreviated number system established in Canada is the foreign system most similar to the system established in the United States. There are other abbreviated number calling systems in place in the United States and abroad for such purposes as handling municipal information and services calls (3-1-1) and for other purposes. All of these special or abbreviated number call systems that have geographic-based content suffer from similar shortcomings in their abilities to automatically place incoming calls to an action-response facility geographically proximate to the locus of the caller. It is for this reason that the 9-1-1 emergency call system of the United States is employed for purposes of this application as a preferred embodiment of the system and apparatus of the present invention.
Automatic Number Identification (ANI) is a feature for 9-1-1 services that allows the caller's telephone number to be delivered with the call and displayed at the PSAP. This ANI feature is sometimes referred to as Calling Party Number (CPN). The feature is useful for identifying the caller and, if the caller cannot communicate, for callback. A signaling scheme known as Centralized Automatic Message Accounting (CAMA), originally used to identify the originator of a long distance call for billing purposes, was adapted to facilitate ANI delivery to the PSAP. CAMA uses multi-frequency (MF) signaling to deliver 8 digits to the PSAP. The first digit (called the Number Plan Digit-NPD) specifies one of four possible area codes. Digits 2-8 represent the caller's 7-digit telephone number. The ANI is framed with a key pulse (KP) at the beginning and a start (ST) at the end in the format: KP-NPD-NXX-XXXX-ST.
The multi-frequency (MF) signaling used in connection with the ANI feature (referred to herein as Enhanced MF signaling) is not the same as the Dual Tone Multi-Frequency (DTMF) signaling also encountered in telecommunication systems. Both signaling schemes use a combination of two specific tones to represent a character, or digit, but the tones are different. There are 16 DTMF tones (0-9, #, *, A, B, C, D); there are a greater number of MF tones (including 0-9, KP, ST, ST′, ST″, and others). DTMF tones represent signals from a user to a network; MF tones are control signals within the network. An enhanced MF arrangement has recently been used in connection with 10-digit wireless telephone systems.
The original 911 systems used only CAMA trunks from the 911 tandem access switch that was connected to specialized hardware located at the PSAP. This specialized 911 PSAP equipment, sometimes referred to as an ANI Controller, was capable of receiving the caller's ANI and then querying an ALI database to obtain the caller's identification. PSAP technology has been improved in that the CAMA trunks and ANI Controller have been replaced with 911-formatted ISDN (Integrated Services Digital Network) telephones directly connected to the 911 access tandem, as described in U.S. Pat. No. 5,311,569 to Brozovich et al. for “Line-Based Public Safety Answering Point”, issued May 10, 1994.
The availability of the caller's telephone number to the PSAP (the ANI feature) led quickly to providing the caller's name and address as well. This was straightforwardly accomplished using the subscriber information stored by telephone companies based upon telephone number since the 1980's. A computer, often embodied in a personal computer (PC), is used by a PSAP operator (situated at the PSAP answering position) to access an automatic location identifier (ALI) database to obtain location information relating to the caller. Such equipment at the PSAP enabled queries of an Au

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and apparatus for providing telephone communication... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and apparatus for providing telephone communication..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and apparatus for providing telephone communication... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363996

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.