System and a method of extracting oil

Wells – Processes – Separating material entering well

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S357000, C210S800000, C210S521000

Reexamination Certificate

active

06547005

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a system for extracting oil, comprising a well for extracting oil from an oil reservoir, a separator device for separating oil and water out of an extracted mixture that comprises water and oil, said separator device comprising a deviated first flow path for said mixture and being arranged along a deviated portion of the well, and a second flow path for receiving water or a water enriched phase that has been separated from the oil-water mixture in the separator device. The separator device comprises a plurality of draining openings along a section of the deviated first flow path, via which the water or water enriched phase flows under the action of gravitational forces from the first flow path to the second flow path.
The invention also comprises a method of extracting oil from an oil reservoir, comprising the steps of extracting a liquid mixture comprising oil and water from the reservoir via a first flow path in a well, and separating, under gravity in a deviated section of the well, the liquid into separate streams one of which mainly comprises water or a water enriched phase, the water or water enriched phase being passed from the first flow path to a separate second flow path via a plurality of draining openings along a section of the deviated first flow path.
The system and method particularly relates to down-hole separation of an extracted oil-water mixture in any oil field, on land as well as off-shore.
The term oil-water mixture should be regarded in a broad sense, and it should be understood that such a mixture is also likely to contain gaseous components such as natural gas as well as solids such as sand particles. The water or water enriched phase separated from the mixture may also contain such further components.
BACKGROUND OF THE INVENTION
The majority of oil reservoirs world-wide start to produce water as they mature. The water/oil ratio, i.e. the water cut, varies with geographical location and the nature and age of the reservoir. As the number of mature fields increase, the industry is facing a need for techniques that ensure economical and efficient production of oil with increasing water cut.
The lifecycle cost for an oilfield can be significantly reduced if the available topside process plant is dedicated to oil production all through the life of the field. If the water cut in the incoming stream is reduced, this may create capacity that will allow tie-in of additional wells, or increased production from existing wells.
The fact that reduced water cut enables increased production of oil is the essence of the drive towards separation of oil and water prior to the entering of the wellstream on the topside facilities.
Down hole separation will in many cases enhance the oil production because, for example, the tubing head pressure will increase significantly as the water is removed down hole, and the increased tubing head pressure will be used to increase the flow of oil from the well. Alternatively the pressure of a first stage gravity separator which might be included in the system, for instance arranged on a topside installation, will be increased, and thus the gas flashed off in the first stage separator will need less compression before being injected or exported.
Gravity separation is in many ways an advantageous solution to separation in the well since this is an extension of the natural separation in the wellbore.
PRIOR ART
A method and apparatus of separating the components of the fluid produced by an oil well which comprises down hole separation under gravity in a deviated non-vertical section of a wellbore is disclosed in GB 2 326 895, to Schlumberger Limited. According to this document, at least two separate flow paths having openings to the flow of the fluid at an upper end of or within a non-vertical section of the well are provided. The gravity is allowed to separate the fluid flow into a hydrocarbon enriched part and a water enriched part. The hydrocarbon-enriched part is flowing through the upper of the vertically separated openings, and the water-enriched part is flowing through the lower of the separated openings.
However, according to the above document, all the water or water enriched part is separated from the oil enriched part at one single location. For practical flow rates, a large amount of the hydrocarbon-enriched part, mainly oil, will follow the water-enriched part, and hence there will be an undesired reduction of the separation efficiency. When, for example the water enriched part is re-injected into an oil reservoir from which the fluid is extracted, this means that also oil that has already been extracted is re-injected into the reservoir, which is an undesirable effect for obvious efficiency reasons.
OBJECT OF THE INVENTION
It is an object of the invention to provide a system for extracting oil which comprises a gravity separator device for down hole separation of water and oil that shall promote an efficient separation of water from oil by means of gravitational separation at an early stage after that an oil-water mixture has been extracted from an oil reservoir, and that is robust and represents an advantageous alternative to prior art separators from an economical point of view.
SUMMARY OF THE INVENTION
The object of the invention is achieved by means of the initially defined system, which is characterised in that the draining opening area per area unit decreases in the flow direction of the oil-water mixture along said section of the deviated first flow path.
Thereby there will be a pressure compensation between the draining openings, which will promote a large separation capacity of the separator. It should be understood that the draining openings are distributed in the flow direction of the oil-water mixture and at different altitude levels. In this context, openings are referred to as slots in a wall arranged between the first and second flow path, but may have other implementations such as holes or perforations. Preferably such a wall is the wall of a tube or tubing that encloses and defines the first flow path.
The draining opening area per area unit decreases in the flow direction of the oil-water mixture along said section of the deviated first flow path. If, for example, the draining openings comprise slots or holes in a wall section between the first and second flow path, the distance between such openings may be increased and/or the individual size of such openings be decreased in the flow direction of the oil-water mixture in order to accomplish this feature. Thereby, less oil will follow the water or water enriched phase through the draining openings to the second flow path than would otherwise be the case, as consideration is taken to the changing separation conditions that exist along the draining section due to changing pressure conditions and concentration changes in the oil-water mixture that passes through that section.
According to a developed embodiment, the draining openings are distributed along a distance of at least 100 times the length of the diameter of the first flow path. In general terms, the basic idea is to provide a draining section long enough to ensure that the water in the oil-water mixture gets time to separate due to the gravitational forces, and to form a water or water enriched layer in a lower part of the first flow path. Then, by means of the draining openings, the water is continuously drained off from the first flow path along the draining section. When optimising the configuration and distribution of the draining openings consideration is taken to the flow rate of the oil-water mixture in the first flow path.
According to one embodiment the system of the invention is characterised in that, at least in the section along which the draining openings are located, the cross section of the first flow path is locally expanded such that, under the prevailing pressure conditions in the well, a locally reduced flow rate of the oil-water mixture is obtained along said section. Flow rate is referred to as flow velocity measured in m/s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and a method of extracting oil does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and a method of extracting oil, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and a method of extracting oil will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3032692

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.