Syringe and method of using

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S199000, C604S232000, C604S216000, C604S014000, C433S090000, C433S098000

Reexamination Certificate

active

06830564

ABSTRACT:

BACKGROUND OF THE INVENTION
Syringes are used by medical personnel to withdraw blood from patients, inject intravenous medications into patients, inject intramuscular medications into patients, prepare irrigation solutions, prepare dialysis fluids, prepare intravenous pushes, prepare bolus fluids, prepare intravenous fluids for parenteral injection, and prepare oral dose medications. Personnel trained to prepare solutions, pushes, or other fluids for injection prepare the solutions within a laminar flow hood or a vertical flow hood using aseptic technique. The hood provides a work area which reduces the probability of contaminants being introduced into the intravenous admixtures or other solutions during their preparation. Vertical flow hoods and biohazard hoods additionally reduce the probability of escape of biohazard materials being used from the work area and hood. The intravenous fluids, admixtures, and other solutions are prepared by placing a bag or bottle of fluid for injection, along with a needle, syringe, and the injectable medication, into the delineated work area in the hood. The medication is drawn from an ampoule or vial, for example, into the syringe using a needle and is then injected into the bag of intravenous fluid for injection. The fluid for injection can be a push bag, minibag, large volume parenteral, lipids or fat emulsion, etc. The bag or bottle of fluid for injection, apart from its therapeutic value, functions as a vehicle for delivering the medication, electrolytes, or other additives to the patient intravenously.
The individuals preparing the intravenous solutions are typically gowned, gloved, and use aseptic technique during the course of preparing the intravenous fluids. When preparing solutions for injection, it is necessary for the individual preparing the intravenous fluids to move their hands in and out of the laminar flow work area and also out of the laminar flow hood. Accordingly, while the hands are outside the work area and the hood, contaminants in the outside environment are introduced onto the hands or gloves of the individual preparing the intravenous solutions. In addition, the outer packaging used to hold the intravenous additives, ampoules, vials, syringes, needles, and other items used in preparing the solutions is not sterile and can carry contaminants which can be transferred or deposited onto the hands and fingers or gloves of the individual preparing the intravenous admixtures. While aseptic technique is used by the personnel preparing the solutions to reduce the tendency of introducing contaminants into the solutions being prepared, these contaminants can gain entry into the medication that has been drawn-up into the syringe barrel by their being deposited onto the inside surfaces of the syringe barrel by way of the barrel opening and/or plunger. Although not encouraged, inadvertent contact of the plunger shaft typically occurs with the hands, fingers, or gloves during the preparation of a solution. If the air, hands, fingers, or gloves are carrying contaminants such as dirt, lint, viruses, bacteria, microorganisms, dust, germs, pathogens, paper fibers, etc., then these contaminants can be deposited onto the plunger shaft surface and/or fall into the rearward barrel opening and subsequently be deposited onto the inner barrel walls. While a handle portion is usually located on the rearward end portion of the plunger to aid an individual in sliding the plunger into and out of the syringe barrel, larger syringes are typically difficult to handle using only one hand, or even both hands, because of the syringe size, plunger length, and friction created by surface area contact between the internal wall surfaces of the syringe barrel and the plunger piston surface. As a result, the plunger is often grasped by its shaft to gain leverage for aiding the individual preparing the intravenous fluids in pulling the plunger and piston along the hollow or cavity of the inner syringe barrel length to draw medication into the syringe cavity. Because the barrel end is open, grasping the plunger shaft allows contaminants present on the hands, fingers, or gloves to be deposited on the plunger shaft. These contaminants may also fall into the rearward end opening of the syringe barrel and contact the inner surfaces of the syringe barrel. The outside surfaces of the piston and the medication in contact with the inside syringe barrel surfaces can pick up these contaminants and ultimately deliver them to the solutions being prepared. Syringes and plungers currently in use do little to discourage the introduction of contaminants onto the plunger shaft and inner syringe barrel surface. The current syringes also suffer from problems of piston failure or detachment of the piston from the forward end of the plunger shaft causing loss of the seal between the piston and the inner surfaces of the syringe barrel. When this occurs, medication in the syringe barrel leaks or flows out of the syringe barrel rearward end opening and onto the hands, fingers, gloves, and work surface. When the material is blood or the medication or additive being used to prepare the solutions is a biohazard material such as certain chemotherapy drugs, acids, or radioactive pharmaceuticals, the safety of the individual working with the material is compromised because of exposure to and contact with the hazardous material.
On occasion, nurses or other personnel are required to prepare intravenous admixtures because of a patient's immediate requirement for a medication. These admixtures are prepared in non-sterile environments and generally without the use of aseptic technique. The syringes of the instant invention provide an added level of protection to the medication when working in a non-sterile environment.
An additional problem which plagues current syringe designs is the problem resulting from pulling the forward end of the plunger and piston to close to the rearward end opening of the syringe barrel cavity leading to accidental separation of the plunger from the barrel. Also, when the piston and forward end of the plunger are withdrawn along the syringe barrel cavity and positioned close to the rearward syringe barrel opening, the plunger shaft and medication in the syringe cavity is in increased jeopardy of contamination. Additionally, any rocking motion caused to the plunger shaft while in this position tends to compromise the seal between the piston and the syringe barrel inner surface causing leaking of the medication.
The instant invention overcomes the drawbacks noted above.
SUMMARY OF THE INVENTION
This invention relates to a new and improved syringe for use in withdrawing blood from patients, injecting intravenous medications into patients, preparing pre-filled syringes with medications for injection, preparing irrigation solutions, preparing dialysis fluids, preparing intravenous pushes, preparing bolus fluids, preparing intravenous fluids, preparing large volume parenterals for intravenous injection, preparing oral dose medications, and preparing medications requiring chemotherapy drugs, acids, or radioactive pharmaceuticals, etc.
In a first embodiment of this invention, it is an object to provide a new and improved syringe having a corrugated sheath, cover, or shield concentrically enveloping a plunger shaft. The forward end terminus of the corrugated sheath, cover, or shield is attached or molded to the rearward end face surface of the syringe barrel handle member which is formed, or molded, on the rearward end terminus of the syringe barrel. The rearward end terminus of the corrugated sheath, cover, or shield is attached by molding, fusing, adhesives, ultrasonic bonding or welding, thermal bonding, etc., to the forward face surface of a plunger handle member which is also centrally molded, or formed on the rearward end terminus of the plunger shaft. The rearward end terminus of the plunger shaft is centrally molded to the forward face surface of the plunger handle member with the forward end and body of the plunger shaft extending and movably fitted into the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Syringe and method of using does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Syringe and method of using, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Syringe and method of using will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.