Synthetic quartz glass preform

Compositions: ceramic – Ceramic compositions – Glass compositions – compositions containing glass other than...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06423656

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a synthetic quartz glass preform and a device for producing the same.
In accordance with developments in the semiconductor industry, and utilization of the products from the semiconductor industry in various fields of application, as well as due to independent developments, in particular in the special fields of materials management and medicine, light sources with very high energy densities find application. Particularly, these are excimer laser with operation wavelengths of 248 nm and 193 nm. The optical components used thereby for imaging and directing the radiation, as well as the photomasks which exclusively consist of synthetic quartz glass or calcium fluoride have to satisfy the required optical quality and must not lose the same in continuous operation. The most important high-quality features of the optical components arid the most difficult ones to be set, are optical homogeneity and stability with respect to excimer laser irradiation in the deep ultra-violet light (DUV). Therefore, there was no lack of trials in the past to obtain such high-quality features permanently and reproducibly.
Hence, there is known a method for producing a homogeneous, striae free body of quartz glass from DE 42 04 406 A1, in which a rod-shaped initial body is twisted, multiply thermally remodeled in a mould of suitable foreign material and twisted again. In the EP 0 673 888 A1 this method is modified under avoidance of any contact with a foreign material in such a manner that a quartz glass body subsequently produced according to the method is optically homogeneous in three directions and additionally is stable with respect to excimer laser radiation. However, EP 0 673 888 A1 does not teach to which degree this stability is achieved. Additionally, the method is considerably time and cost consuming.
Synthetic quartz glass is characterized by having very good transmission in the deep range of ultra-violet light (DUV). When it is exposed to high energy short-wave radiation as, for example, provided by excimer lasers at 248 nm and 193 nm, photochemical reactions will result, which will lead to the formation of paramagnetic defects, the latter being responsible for the formation of absorption bands and the development of luminescence. The power of these photochemical reactions depends on intrinsic defects in the form of binding anomalies. The photochemical reactions are also intensified by contaminants in a network as given, for example, by atoms of transition metals and chlorine. Parallel to these photochemical reactions which impair the optical properties of the quartz glass, annealing processes take place for which an OH content and a content of free hydrogen in the quartz glass is of importance.
From the subsequently discussed prior art it is known to desensitize synthetic quartz glass to high-energy radiation in the DUV by the following measures, carried out individually or in combination: introducing molecular hydrogen into the quartz glass bulk, using particularly pure starting raw material, using chlorine free starting raw material, and doping the quartz glass with fluorine and others. The EP 0 483 752 A1 ( U.S. Pat. No. 5,410,428) reference relates to a synthetic silica glass with a content of molecular hydrogen of at least 5·10
16
molecules/cm
3
which is manufactured by a process wherein a quartz glass body is exposed to a hydrogen atmosphere in a furnace at a high temperature and a high pressure for a defined time, until a desired hydrogen concentration has been established in its interior; subsequently the silica glass body is definedly cooled down to ambient temperature. This silica glass is known as being very stable against high-energy radiation in the DUV, although it has only been exposed to 2·10
6
laser shots. It is disadvantageous that an after treatment of the silica glass is necessary including extensive safety measures required thereto. Furthermore, the produced silica glass bodies exhibiting the desired properties may not be of very large volume.
The EP 0 525 984 A1 reference describes a method for producing quartz glass which is adapted to be exposed to an excimer laser irradiation. However, the resistance property of the same is only disclosed up to a laser shot rate of about 10
6
at an energy density of 200 mJ/cm
2
, a shot frequency of 100 Hz and a wavelength of &lgr;=193 nm. The method does not function without a specific homogenizing step which renders it expensive.
The patent specification EP 0 737 654 A1 relates to a synthetic quartz glass with a content of molecular hydrogen of at least 10
18
molecules/cm
3
and a low OH content of a maximum of 50 ppm, which at a temperature of maximally 500° C. and under a high pressure is enriched with H
2
. The stability is specified with 1.3·10
7
laser shots at an energy density of 350 mJ/cm
2
, a shot frequency of 400 Hz and a wavelength of 248 nm, Also in this case, a subsequent treatment of the quartz glass is required, to which end a chlorine free raw material can be used.
In U.S. Pat. No. 5,364,433 a synthetic quartz glass suited for production of DUV-stepper lenses and a method for producing the same is disclosed. The quartz glass exhibits an OH content of 10-100 ppm, a chlorine content of maximally 200 ppm, a molecular hydrogen content of <10
16
molecules/cm
3
, a refractive index homogeneity of >5·10
−6
and a strain of >5 nm/cm. The stability of this quartz glass against excimer laser irradiation at a low absorption is only disclosed up to a low 10 shot rate of 0.8·10
6
(energy density 200 mJ/cm
2
, shot frequency 100 Hz, &lgr;=193 nm). The comparatively low stability is explained in that a dehydration step provided for in the manufacturing process leads to an increase of the Cl content which, in turn, reduces the DUV stability. An additionally provided homogenizing step renders the method more expensive.
A substrate plate for photomasks which shows a H
2
content between 10
17
and 10
19
molecules/cm
3
is disclosed in EP 0 636 586 A1. This solution is little or not at all suited for the production of imaging optical members in the DUV range, which are subject to considerably higher requirements with regard to the transmission and the optical homogeneity than photomasks.
U.S. Pat. No. 5,086,352 discloses optical components made of synthetic quartz glass which can be employed in DUV excimer laser irradiation and a method for producing the same. The optical components exhibit an OH concentration of at least 100 ppm and a doped hydrogen concentration of at least 5·10
16
molecules/cm
3
(and an amount of 1·10
20
molecules/cm
3
released at degassing, respectively,) and are free from stratification in at least one direction. 50 ppb are given for the chemical purity of the component in the most pretentious case for Na, K and LI, and 10 ppb for Mg, Ca, Ti, Cr, Fe, Ni, and Cu. The preforms of the optical components are characterized in that there is no stratification parallel to the incident light, that the OH concentration rises from a central minimum to a maximum without a point of inflection, that in the range between minimum and maximum the refractive index inhomogeneity is 2·10
−6
or lower, and in that there exists a hydrogen doping. Such a preform shows profiles of the OH concentration, of the Cl concentration and of a fictitious temperature which are to be adjusted for obtaining a high refractive index of homogeneity. The method for producing the optical components comprises, in each case, steps for removing stratifications and for doping with hydrogen which renders the entire production process complicated and expensive. Moreover, the stability is only given up to a comparatively low laser shot rate of 10
7
(energy densities: 400 and 100 mJ/cm
2
, respectively, shot frequencies: 100 Hz, &lgr;: 248 and 193 nm, respectively,).
U.S. Pat. No. 5,325,230 is based on U.S. Pat. No. 5,086,352 and additionally requires for the optical component of synthetic quartz glass an absence of oxygen defects and a strain birefringence

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Synthetic quartz glass preform does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Synthetic quartz glass preform, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synthetic quartz glass preform will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2849363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.